group_norm_op.h 7.0 KB
Newer Older
D
Dun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

template <typename DeviceContext, typename T>
class GroupNormKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    auto* scale = ctx.Input<Tensor>("Scale");
    auto* bias = ctx.Input<Tensor>("Bias");
    auto* x = ctx.Input<Tensor>("X");

    auto* y = ctx.Output<Tensor>("Y");
    auto* mean = ctx.Output<Tensor>("Mean");
    auto* var = ctx.Output<Tensor>("Variance");
    const auto groups = ctx.Attr<int>("groups");

    const auto x_dims = x->dims();
    const int group_size = (x_dims[1] - 1) / groups + 1;

    y->mutable_data<T>(ctx.GetPlace());
    mean->mutable_data<T>(ctx.GetPlace());
    var->mutable_data<T>(ctx.GetPlace());

    auto* x_data = x->data<T>();
    auto* y_data = y->data<T>();
    auto* mean_data = mean->data<T>();
    auto* var_data = var->data<T>();

    const T* scale_data = nullptr;
    if (scale) scale_data = scale->data<T>();
    const T* bias_data = nullptr;
    if (bias) bias_data = bias->data<T>();

    int imsize = x_dims[2] * x_dims[3];
    auto* iter_x_data = x_data;
    auto* iter_y_data = y_data;
    for (int bid = 0; bid < x_dims[0]; bid++)
      for (int gid = 0; gid < groups; gid++) {
        T x_mean = 0, x_var = 0;
        int number = std::min(group_size,
                              static_cast<int>(x_dims[1] - gid * group_size));
        auto* tmp = iter_x_data;
        for (int cid = 0; cid < number; cid++) {
          for (int imid = 0; imid < imsize; imid++, iter_x_data++) {
            x_mean += iter_x_data[0];
            x_var += iter_x_data[0] * iter_x_data[0];
          }
        }
        x_mean /= number * imsize;
        x_var /= number * imsize;
        x_var = x_var - x_mean * x_mean;
        T var_inv = 1.0 / sqrt(x_var + epsilon);
        mean_data[bid * groups + gid] = x_mean;
        var_data[bid * groups + gid] = x_var;
        for (int cid = 0; cid < number; cid++) {
          for (int imid = 0; imid < imsize; imid++, tmp++, iter_y_data++) {
            T val = (tmp[0] - x_mean) * var_inv;
            if (scale_data) val *= scale_data[gid * group_size + cid];
            if (bias_data) val += bias_data[gid * group_size + cid];
            iter_y_data[0] = val;
          }
        }
      }
  }
};

template <typename DeviceContext, typename T>
class GroupNormGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    auto* x = ctx.Input<Tensor>("X");
    auto* mean = ctx.Input<Tensor>("Mean");
    auto* var = ctx.Input<Tensor>("Variance");
    auto* scale = ctx.Input<Tensor>("Scale");
    auto* d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto groups = ctx.Attr<int>("groups");

    // init output
    auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto* d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    const auto& x_dims = x->dims();
    const int group_size = (x_dims[1] - 1) / groups + 1;

    // TODO(liangdun): need to check d_x is null
    math::SetConstant<DeviceContext, T> set_zero;
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    T* d_x_data = nullptr;
    if (d_x) {
      d_x->mutable_data<T>(ctx.GetPlace());
      set_zero(dev_ctx, d_x, static_cast<T>(0));
      d_x_data = d_x->data<T>();
    }

    auto* x_data = x->data<T>();
    auto* y_data = d_y->data<T>();
    auto* mean_data = mean->data<T>();
    auto* var_data = var->data<T>();
    T* d_scale_data = nullptr;
    if (d_scale) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      set_zero(dev_ctx, d_scale, static_cast<T>(0));
      d_scale_data = d_scale->data<T>();
    }
    T* d_bias_data = nullptr;
    if (d_bias) {
      d_bias->mutable_data<T>(ctx.GetPlace());
      set_zero(dev_ctx, d_bias, static_cast<T>(0));
      d_bias_data = d_bias->data<T>();
    }

    const T* scale_data = nullptr;
    if (scale) scale_data = scale->data<T>();

    int imsize = x_dims[2] * x_dims[3];
    auto* iter_x_data = x_data;
    auto* iter_d_x_data = d_x_data;
    auto* iter_y_data = y_data;
    for (int bid = 0; bid < x_dims[0]; bid++)
      for (int gid = 0; gid < groups; gid++) {
        T x_mean = mean_data[bid * groups + gid];
        T x_var = var_data[bid * groups + gid];
        T var_inv = 1.0 / sqrt(x_var + epsilon);
        int number = std::min(group_size,
                              static_cast<int>(x_dims[1] - gid * group_size));
        auto* tmp = iter_x_data;
        auto* tmp2 = iter_d_x_data;
        T d_var_inv = 0, d_x_mean = 0;
        for (int cid = 0; cid < number; cid++) {
          for (int imid = 0; imid < imsize;
               imid++, tmp++, iter_y_data++, iter_d_x_data++) {
            T val = (tmp[0] - x_mean) * var_inv;
            T dval = iter_y_data[0];
            if (d_bias_data) d_bias_data[gid * group_size + cid] += dval;
            if (d_scale_data)
              d_scale_data[gid * group_size + cid] += val * dval;
            if (scale_data) dval = scale_data[gid * group_size + cid] * dval;

            d_var_inv += (tmp[0] - x_mean) * dval;
            T d_tmp = dval * var_inv;
            if (d_x_data) iter_d_x_data[0] += d_tmp;
            d_x_mean -= d_tmp;
          }
        }

        T d_x_var =
            -1.0 / (2 * (x_var + epsilon) * sqrt(x_var + epsilon)) * d_var_inv;
        d_x_mean -= 2 * d_x_var * x_mean;
        d_x_var /= number * imsize;
        d_x_mean /= number * imsize;

        iter_d_x_data = tmp2;

        if (d_x_data) {
          for (int cid = 0; cid < number; cid++) {
            for (int imid = 0; imid < imsize;
                 imid++, iter_x_data++, iter_d_x_data++) {
              iter_d_x_data[0] += d_x_mean;
              iter_d_x_data[0] += iter_x_data[0] * 2 * d_x_var;
            }
          }
        }
      }
  }
};

}  // namespace operators
}  // namespace paddle