engine.h 23.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
18
#include <map>
Y
Yan Chunwei 已提交
19
#include <memory>
20
#include <mutex>  // NOLINT
21
#include <string>
Y
Yan Chunwei 已提交
22
#include <unordered_map>
23
#include <unordered_set>
24
#include <utility>
25
#include <vector>
W
wanghuancoder 已提交
26

N
nhzlx 已提交
27
#include "paddle/fluid/framework/tensor.h"
28
#include "paddle/fluid/framework/tensor_util.h"
Z
Zhaolong Xing 已提交
29
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
Y
Yan Chunwei 已提交
30 31
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
32
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
33
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
34
#include "paddle/fluid/inference/utils/singleton.h"
35
#include "paddle/fluid/platform/enforce.h"
36
#include "paddle/utils/any.h"
Y
Yan Chunwei 已提交
37

W
wanghuancoder 已提交
38 39 40 41 42 43
namespace paddle {
namespace framework {
class Tensor;
}  // namespace framework
}  // namespace paddle

Y
Yan Chunwei 已提交
44 45 46 47
namespace paddle {
namespace inference {
namespace tensorrt {

W
wanghuancoder 已提交
48 49 50 51
namespace plugin {
class PluginTensorRT;
}  // namespace plugin

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {  // NOLINT

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
      return TRT_DT::kINT32;
    default:
      return TRT_DT::kINT32;
  }
  PADDLE_THROW(platform::errors::InvalidArgument(
      "unknown fluid datatype in TRT op converter"));
  return TRT_DT::kINT32;
}

// The T can be int32 or int64 type.
template <typename T>
nvinfer1::Dims Vec2TRT_Dims(const std::vector<T>& shape, std::string input,
                            bool with_dynamic_shape = false) {
75
  PADDLE_ENFORCE_GT(shape.size(), 0UL,
76
                    platform::errors::InvalidArgument(
77
                        "TensorRT's tensor input requires at least 1 "
78 79
                        "dimensions, but input %s has %d dims.",
                        input, shape.size()));
W
wenbin 已提交
80

81 82 83 84 85 86 87 88 89 90 91 92 93
  auto ShapeStr = [](const std::vector<T>& shape) {
    std::ostringstream os;
    os << "[";
    for (size_t i = 0; i < shape.size(); ++i) {
      if (i == shape.size() - 1) {
        os << shape[i];
      } else {
        os << shape[i] << ",";
      }
    }
    os << "]";
    return os.str();
  };
94 95
  if (!with_dynamic_shape) {
    if (shape.size() == 4UL) {
96 97 98 99 100 101
      if (shape[2] == -1 || shape[3] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
            input, ShapeStr(shape)));
      }
102
      return nvinfer1::Dims3(shape[1], shape[2], shape[3]);
W
wenbin 已提交
103 104 105 106 107 108 109 110
    } else if (shape.size() == 5UL) {
      if (shape[2] == -1 || shape[3] == -1 || shape[4] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
            input, ShapeStr(shape)));
      }
      return nvinfer1::Dims4(shape[1], shape[2], shape[3], shape[4]);
111
    } else if (shape.size() == 3UL) {
112 113 114 115 116 117
      if (shape[1] == -1 || shape[2] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
            input, ShapeStr(shape)));
      }
118
      return nvinfer1::Dims2(shape[1], shape[2]);
119 120 121 122 123 124 125 126 127 128 129
    } else if (shape.size() == 2UL) {
      if (shape[1] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
            input, ShapeStr(shape)));
      }
      nvinfer1::Dims dims;
      dims.nbDims = 1;
      dims.d[0] = shape[1];
      return dims;
130
    }
131
    return nvinfer1::Dims3(shape[1], 1, 1);
132 133
  } else {
    if (shape.size() == 4UL) {
134
      return nvinfer1::Dims4(shape[0], shape[1], shape[2], shape[3]);
135 136 137
    } else if (shape.size() == 3UL) {
      return nvinfer1::Dims3(shape[0], shape[1], shape[2]);
    }
138 139 140 141 142 143
    nvinfer1::Dims dims;
    dims.nbDims = shape.size();
    for (size_t i = 0; i < shape.size(); i++) {
      dims.d[i] = shape[i];
    }
    return dims;
144 145 146 147
  }
}
}  // NOLINT

N
nhzlx 已提交
148
class TRTInt8Calibrator;
W
wanghuancoder 已提交
149

Y
Yan Chunwei 已提交
150 151 152 153
/*
 * TensorRT Engine.
 *
 * There are two alternative ways to use it, one is  to build from a paddle
154
 * protobuf model, another way is to manually construct the network.
Y
Yan Chunwei 已提交
155
 */
156 157
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;
158
  using ShapeMapType = std::map<std::string, std::vector<int>>;
159

Y
Yan Chunwei 已提交
160 161 162 163
 public:
  // Weight is model parameter.
  class Weight {
   public:
164
    Weight() = default;
165
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
166 167 168 169
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
170
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
171

172 173
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
174 175 176 177
   private:
    nvinfer1::Weights w_;
  };

Z
Zhaolong Xing 已提交
178 179 180 181
  TensorRTEngine(
      int max_batch, int max_workspace,
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
      TRTInt8Calibrator* calibrator = nullptr, int device_id = 0,
182 183 184
      const ShapeMapType min_input_shape = {},
      const ShapeMapType max_input_shape = {},
      const ShapeMapType optim_input_shape = {},
185
      bool disable_trt_plugin_fp16 = false,
Z
Zhaolong Xing 已提交
186
      nvinfer1::ILogger& logger = NaiveLogger::Global())
Y
Yan Chunwei 已提交
187 188
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
Z
Zhaolong Xing 已提交
189
        precision_(precision),
N
nhzlx 已提交
190
        calibrator_(calibrator),
N
nhzlx 已提交
191
        device_id_(device_id),
192 193 194
        min_input_shape_(min_input_shape),
        max_input_shape_(max_input_shape),
        optim_input_shape_(optim_input_shape),
195
        disable_trt_plugin_fp16_(disable_trt_plugin_fp16),
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
        logger_(logger) {
    if (min_input_shape_.size() != 0 && max_input_shape_.size() != 0 &&
        optim_input_shape_.size() != 0) {
      PADDLE_ENFORCE_EQ(
          min_input_shape_.size(), max_input_shape_.size(),
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of max_input_shape_",
              min_input_shape_.size(), max_input_shape_.size()));
      PADDLE_ENFORCE_EQ(
          min_input_shape_.size(), optim_input_shape_.size(),
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of optim_input_shape_",
              min_input_shape_.size(), optim_input_shape_.size()));
#if IS_TRT_VERSION_GE(6000)
      with_dynamic_shape_ = true;
#else
      LOG(WARNING) << "Using dynamic shape of TRT need ensure that the TRT "
                      "version should be at least 6.";
#endif
    }
218
    dy::initLibNvInferPlugins(&logger, "");
219
  }
Y
Yan Chunwei 已提交
220

221 222 223 224 225 226 227 228 229
  ~TensorRTEngine() {
    for (auto& attr : attrs_) {
      if (attr_dels_.find(attr.first) != attr_dels_.end()) {
        attr_dels_[attr.first]();
      }
    }
    attrs_.clear();
    attr_dels_.clear();
  }
Y
Yan Chunwei 已提交
230

231
  // Add an input and set its name, data type and dimension.
Y
Yan Chunwei 已提交
232 233 234 235 236 237 238
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
  void DeclareOutput(const nvinfer1::ILayer* layer, int offset,
                     const std::string& name);
L
Luo Tao 已提交
239 240
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
241
  void ClearTensorMap() { itensor_map_.clear(); }
Y
Yan Chunwei 已提交
242

L
Luo Tao 已提交
243 244 245
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
  nvinfer1::ITensor* GetITensor(const std::string& name);
Y
Yan Chunwei 已提交
246 247

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
248 249 250 251 252 253 254 255 256 257 258 259
  nvinfer1::IExecutionContext* context() {
    std::unique_lock<std::mutex> lock(mutex_);
    const std::thread::id tid = std::this_thread::get_id();
    if (infer_context_.find(tid) == infer_context_.end()) {
      PADDLE_ENFORCE_NOT_NULL(
          infer_engine_,
          platform::errors::InvalidArgument(
              "You should build engine first and then set the context."));
      infer_context_[tid].reset(infer_engine_->createExecutionContext());
    }
    return infer_context_[tid].get();
  }
260 261 262 263 264 265 266 267 268 269
  void ResetContext() {
    std::unique_lock<std::mutex> lock(mutex_);
    const std::thread::id tid = std::this_thread::get_id();
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "You should build engine first and then set the context."));
    infer_context_[tid].reset(nullptr);
    infer_context_.erase(tid);
  }
N
nhzlx 已提交
270 271

  nvinfer1::IHostMemory* Serialize() {
272 273 274 275
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "The TensorRT engine must be built first before serialization"));
N
nhzlx 已提交
276 277 278 279 280
    ihost_memory_.reset(infer_engine_->serialize());
    return ihost_memory_.get();
  }

  void Deserialize(const std::string& engine_serialized_data) {
N
nhzlx 已提交
281
    freshDeviceId();
N
nhzlx 已提交
282
    infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

    if (use_dla_) {
      if (precision_ != AnalysisConfig::Precision::kInt8 &&
          precision_ != AnalysisConfig::Precision::kHalf) {
        LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                        "set float32, so DLA is not used.";
      } else if (runtime->getNbDLACores() == 0) {
        LOG(WARNING)
            << "TensorRT DLA is set by config, but your device does not have "
               "DLA, so DLA is not used.";
      } else {
        if (dla_core_ < 0 || dla_core_ >= runtime->getNbDLACores()) {
          dla_core_ = 0;
          LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
                       << runtime->getNbDLACores() << ", but got " << dla_core_
                       << ", so use use 0 as default.";
        }
        runtime->setDLACore(dla_core_);
        LOG(INFO) << "TensorRT DLA enabled in Deserialize(), DLACore "
                  << dla_core_;
      }
    }

306 307
    infer_engine_.reset(runtime->deserializeCudaEngine(
        engine_serialized_data.c_str(), engine_serialized_data.size()));
308

309 310 311 312 313 314 315 316
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::Fatal(
            "Building TRT cuda engine failed when deserializing engine info. "
            "Please check:\n1. Your TRT serialization is generated and loaded "
            "on the same GPU architecture;\n2. The Paddle Inference version of "
            "generating serialization file and doing inference are "
            "consistent."));
N
nhzlx 已提交
317 318
  }

319 320
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
321 322 323 324 325 326 327

  bool WithFp16() {
    bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    return enable_fp16 && support_fp16;
  }

N
nhzlx 已提交
328
  int GetDeviceId() { return device_id_; }
329

330 331
  nvinfer1::IPluginV2Layer* AddPlugin(nvinfer1::ITensor* const* inputs,
                                      int num_inputs, plugin::PluginTensorRT*);
332 333 334 335 336

  nvinfer1::IPluginV2Layer* AddPluginV2Ext(nvinfer1::ITensor* const* inputs,
                                           int num_inputs,
                                           plugin::PluginTensorRTV2Ext* plugin);

337 338 339 340
  nvinfer1::IPluginV2Layer* AddPluginV2IOExt(nvinfer1::ITensor* const* inputs,
                                             int num_inputs,
                                             nvinfer1::IPluginV2IOExt* plugin);

341 342 343 344 345 346 347
  void SetTensorDynamicRange(nvinfer1::ITensor* tensor, float range) {
    quant_dynamic_range_[tensor] = range;
  }

  float* GetWeightCPUData(const std::string& name,
                          framework::Tensor* weight_tensor, bool enable_int8,
                          const std::vector<float>& scale = {});
N
nhzlx 已提交
348 349 350 351 352 353 354 355

  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
  std::unordered_map<std::string /*name*/, std::unique_ptr<framework::Tensor>>
      weight_map;
Y
Yan Chunwei 已提交
356

357 358 359 360 361 362
  // When setting weight_map, a self-increasing suffix is needed for the names
  // so as to avoid repeatedly setting weights with the same name.
  void SetWeights(std::string w_name,
                  std::unique_ptr<framework::Tensor> w_tensor) {
    static int suffix_counter = 0;
    std::string suffix = std::to_string(suffix_counter);
P
Pei Yang 已提交
363 364
    std::string splitter = "__";
    weight_map[w_name + splitter + suffix] = std::move(w_tensor);
365 366 367
    suffix_counter += 1;
  }

368
  void SetUseOSS(bool use_oss) { use_oss_ = use_oss; }
369 370
  void SetUseDLA(bool use_dla) { use_dla_ = use_dla; }
  void SetDLACore(int dla_core) { dla_core_ = dla_core; }
371 372
  void SetWithErnie(bool with_ernie) { with_ernie_ = with_ernie; }

373 374 375 376 377 378
  void ClearWeights() {
    for (auto& weight_pair : weight_map) {
      weight_pair.second.reset(nullptr);
    }
  }

379 380 381 382 383 384 385 386 387 388
  // NOTE: The func bellow was modified to adapt the dynamic shape.
  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork();
  // After finishing adding ops, freeze this network and creates the execution
  // environment.
  void FreezeNetwork();
  void Execute(int batch_size, std::vector<void*>* buffers,
               cudaStream_t stream = nullptr);

389
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
390 391 392 393

  ShapeMapType min_input_shape() { return min_input_shape_; }
  ShapeMapType max_input_shape() { return max_input_shape_; }
  ShapeMapType optim_input_shape() { return optim_input_shape_; }
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442

  bool AdjustDynamicShapeRange(const ShapeMapType& runtime_input_shape,
                               std::vector<std::string>* changed) {
    bool ret = false;
    changed->clear();
    for (const auto& it : runtime_input_shape) {
      auto name = it.first;
      auto input_shape = it.second;
      PADDLE_ENFORCE_EQ(
          min_input_shape_.count(name), true,
          platform::errors::InvalidArgument(
              "TRT dynamic_shape min_input_shape %s not found.", name));
      PADDLE_ENFORCE_EQ(min_input_shape_[name].size(), input_shape.size(),
                        platform::errors::InvalidArgument(
                            "TRT dynamic_shape min_input_shape %s size not "
                            "equal, the min_input_shape[%s].size()=%d"
                            ", but the runtime_input_shape[%s].size()=%d.",
                            name, name, min_input_shape_[name].size(), name,
                            input_shape.size()));
      auto bak_min_shape = min_input_shape_[name];
      auto bak_max_shape = max_input_shape_[name];
      bool min_change = false;
      bool max_change = false;
      for (size_t d = 0; d < input_shape.size(); ++d) {
        if (input_shape[d] < min_input_shape_[name][d]) {
          ret = true;
          min_change = true;
          min_input_shape_[name][d] = input_shape[d];
        }
        if (input_shape[d] > max_input_shape_[name][d]) {
          ret = true;
          max_change = true;
          max_input_shape_[name][d] = input_shape[d];
        }
      }

      if (min_change)
        LOG(INFO) << "refactor shape range: " << name << ", min_shape from "
                  << Vec2Str(bak_min_shape) << " to "
                  << Vec2Str(min_input_shape_[name]);
      if (max_change)
        LOG(INFO) << "refactor shape range: " << name << ", max_shape from "
                  << Vec2Str(bak_max_shape) << " to "
                  << Vec2Str(max_input_shape_[name]);
      if (min_change || max_change) changed->push_back(name);
    }
    return ret;
  }

443 444
  bool use_oss() { return use_oss_; }
  bool with_ernie() { return with_ernie_; }
445
  bool disable_trt_plugin_fp16() { return disable_trt_plugin_fp16_; }
446
  bool with_dynamic_shape() { return with_dynamic_shape_; }
447
  AnalysisConfig::Precision precision() { return precision_; }
448

449
#if IS_TRT_VERSION_GE(6000)
450 451 452
  nvinfer1::IPluginV2Layer* AddDynamicPlugin(
      nvinfer1::ITensor* const* inputs, int num_inputs,
      plugin::DynamicPluginTensorRT* plugin) {
453 454 455 456 457
    owned_pluginv2_.emplace_back(plugin);
    return network()->addPluginV2(inputs, num_inputs, *plugin);
  }
#endif

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
  bool Has(const std::string& attr_name) const {
    return attrs_.count(attr_name) > 0;
  }

  void Erase(const std::string& attr_name) {
    if (!Has(attr_name)) {
      return;
    }
    if (attr_dels_.find(attr_name) != attr_dels_.end()) {
      attr_dels_[attr_name]();
      attr_dels_.erase(attr_name);
    }
    attrs_.erase(attr_name);
  }

  // Set a pointer to the attribute. Engine takes ownership of the attribute.
  template <typename AttrType>
  void Set(const std::string& attr_name, AttrType* attr) {
    if (attrs_.count(attr_name) == 0) {
      PADDLE_ENFORCE_EQ(
          attrs_.count(attr_name), 0,
          platform::errors::AlreadyExists(
              "Attribute %s already set in trt engine.", attr_name));
    } else {
      VLOG(3) << "Setting the attribute " << attr_name << " for trt engine "
              << this;
    }
    attrs_[attr_name] = attr;
    attr_dels_[attr_name] = [attr, attr_name]() {
      VLOG(3) << "deleting " << attr_name;
      delete attr;
    };
  }

  // Set a pointer to the attribute. Engine doesn't take ownership. Caller
  // should delete the attribute.
  template <typename AttrType>
  void SetNotOwned(const std::string& attr_name, AttrType* attr) {
    PADDLE_ENFORCE_EQ(
        attrs_.count(attr_name), 0,
        platform::errors::AlreadyExists(
            "Attribute %s already set in trt engine.", attr_name));
    attrs_[attr_name] = attr;
  }

  // Get a reference to the attributed previously set.
  template <typename AttrType>
  AttrType& Get(const std::string& attr_name) const {
    PADDLE_ENFORCE_NE(attrs_.find(attr_name), attrs_.end(),
                      platform::errors::InvalidArgument(
                          "Attribute %s not found in trt engine.", attr_name));
    try {
510 511
      return *paddle::any_cast<AttrType*>(attrs_.at(attr_name));
    } catch (paddle::bad_any_cast&) {
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
      auto TypeToString = [](const std::type_info& info) -> std::string {
        if (std::type_index(info) == std::type_index(typeid(bool*))) {
          return "bool";
        } else if (std::type_index(info) == std::type_index(typeid(int*))) {
          return "int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(const int*))) {
          return "const int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(std::string*))) {
          return "std::string";
        }
        return info.name();
      };

      PADDLE_THROW(platform::errors::InvalidArgument(
          "Invalid type for attritube %s, expected: %s, actual: %s.", attr_name,
          TypeToString(typeid(AttrType*)),
          TypeToString(attrs_.at(attr_name).type())));
    }
  }

Y
Yan Chunwei 已提交
534
 private:
N
nhzlx 已提交
535 536 537 538 539
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();

Y
Yan Chunwei 已提交
540 541
  // the max batch size
  int max_batch_;
542 543
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
544 545
  // the max memory size the engine uses
  int max_workspace_;
546

Z
Zhaolong Xing 已提交
547
  AnalysisConfig::Precision precision_;
N
nhzlx 已提交
548 549 550
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
551

N
nhzlx 已提交
552
  int device_id_;
553 554 555
  ShapeMapType min_input_shape_;
  ShapeMapType max_input_shape_;
  ShapeMapType optim_input_shape_;
556
  bool disable_trt_plugin_fp16_{false};
557
  bool use_oss_{false};
558 559
  bool use_dla_{false};
  int dla_core_{0};
560
  bool with_ernie_{false};
Y
Yan Chunwei 已提交
561 562 563
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
L
Luo Tao 已提交
564 565
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
566

567
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
568
  std::vector<std::unique_ptr<plugin::PluginTensorRTV2Ext>> owned_plugin_v2ext_;
569
  std::vector<std::unique_ptr<nvinfer1::IPluginV2IOExt>> owned_plugin_v2ioext_;
Y
Yan Chunwei 已提交
570 571 572 573

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
574 575 576 577 578
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
579 580 581 582 583 584
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
585 586
  std::unordered_map<std::thread::id, infer_ptr<nvinfer1::IExecutionContext>>
      infer_context_;
N
nhzlx 已提交
587
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
588
  std::unordered_map<nvinfer1::ITensor*, float> quant_dynamic_range_;
589

590
  std::unordered_map<std::string, paddle::any> attrs_;
591 592
  std::unordered_map<std::string, std::function<void(void)>> attr_dels_;

593 594 595 596
  // For dynamic shape
  bool with_dynamic_shape_{false};
#if IS_TRT_VERSION_GE(6000)
  infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
597
  nvinfer1::IOptimizationProfile* optim_profile_;
598
  std::vector<std::unique_ptr<plugin::DynamicPluginTensorRT>> owned_pluginv2_;
599
#endif
600
  std::mutex mutex_;
Y
Yan Chunwei 已提交
601 602
};  // class TensorRTEngine

603
// Add a layer__ into engine__ with args ARGS.
Y
Yan Chunwei 已提交
604 605 606 607 608 609 610 611 612
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
613 614
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ...) \
  engine__->network()->add##layer__(__VA_ARGS__);
Y
Yan Chunwei 已提交
615

616 617 618 619 620 621 622 623 624 625 626 627
class TRTEngineManager {
 public:
  bool Empty() const { return engines_.size() == 0; }
  bool Has(const std::string& name) const {
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }

  TensorRTEngine* Get(const std::string& name) const {
    return engines_.at(name).get();
  }

Z
Zhaolong Xing 已提交
628 629 630 631
  TensorRTEngine* Create(
      std::string name, int max_batch, int max_workspace,
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
      TRTInt8Calibrator* calibrator = nullptr, int device_id = 0,
632 633 634
      const std::map<std::string, std::vector<int>> min_input_shape = {},
      const std::map<std::string, std::vector<int>> max_input_shape = {},
      const std::map<std::string, std::vector<int>> optim_input_shape = {},
635
      bool disable_trt_plugin_fp16 = false,
Z
Zhaolong Xing 已提交
636
      nvinfer1::ILogger& logger = NaiveLogger::Global()) {
637 638 639 640
    auto* p =
        new TensorRTEngine(max_batch, max_workspace, precision, calibrator,
                           device_id, min_input_shape, max_input_shape,
                           optim_input_shape, disable_trt_plugin_fp16, logger);
641 642 643 644 645 646 647 648 649 650
    engines_[name].reset(p);
    return p;
  }

  void DeleteAll() {
    for (auto& item : engines_) {
      item.second.reset(nullptr);
    }
  }

W
Wilber 已提交
651 652 653 654 655 656 657 658
  void DeleteKey(const std::string& key) {
    auto iter = engines_.find(key);
    if (iter != engines_.end()) {
      iter->second.reset(nullptr);
      engines_.erase(iter);
    }
  }

659 660 661 662
 private:
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
};

Y
Yan Chunwei 已提交
663 664 665
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle