# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import os import tempfile import numpy as np import paddle.fluid as fluid import paddle.fluid.profiler as profiler import paddle.fluid.layers as layers import paddle.fluid.core as core import paddle.fluid.proto.profiler.profiler_pb2 as profiler_pb2 class TestProfiler(unittest.TestCase): def net_profiler(self, state, use_parallel_executor=False): profile_path = os.path.join(tempfile.gettempdir(), "profile") open(profile_path, "w").write("") startup_program = fluid.Program() main_program = fluid.Program() with fluid.program_guard(main_program, startup_program): image = fluid.layers.data(name='x', shape=[784], dtype='float32') hidden1 = fluid.layers.fc(input=image, size=64, act='relu') i = layers.zeros(shape=[1], dtype='int64') counter = fluid.layers.zeros( shape=[1], dtype='int64', force_cpu=True) until = layers.fill_constant([1], dtype='int64', value=10) data_arr = layers.array_write(hidden1, i) cond = fluid.layers.less_than(x=counter, y=until) while_op = fluid.layers.While(cond=cond) with while_op.block(): hidden_n = fluid.layers.fc(input=hidden1, size=64, act='relu') layers.array_write(hidden_n, i, data_arr) fluid.layers.increment(x=counter, value=1, in_place=True) layers.less_than(x=counter, y=until, cond=cond) hidden_n = layers.array_read(data_arr, i) hidden2 = fluid.layers.fc(input=hidden_n, size=64, act='relu') predict = fluid.layers.fc(input=hidden2, size=10, act='softmax') label = fluid.layers.data(name='y', shape=[1], dtype='int64') cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(cost) batch_size = fluid.layers.create_tensor(dtype='int64') batch_acc = fluid.layers.accuracy( input=predict, label=label, total=batch_size) optimizer = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9) opts = optimizer.minimize(avg_cost, startup_program=startup_program) place = fluid.CPUPlace() if state == 'CPU' else fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(startup_program) if use_parallel_executor: pe = fluid.ParallelExecutor( state != 'CPU', loss_name=avg_cost.name, main_program=main_program) pass_acc_calculator = fluid.average.WeightedAverage() with profiler.profiler(state, 'total', profile_path) as prof: for iter in range(10): if iter == 2: profiler.reset_profiler() x = np.random.random((32, 784)).astype("float32") y = np.random.randint(0, 10, (32, 1)).astype("int64") if use_parallel_executor: pe.run(feed={'x': x, 'y': y}, fetch_list=[avg_cost.name]) continue outs = exe.run(main_program, feed={'x': x, 'y': y}, fetch_list=[avg_cost, batch_acc, batch_size]) acc = np.array(outs[1]) b_size = np.array(outs[2]) pass_acc_calculator.add(value=acc, weight=b_size) pass_acc = pass_acc_calculator.eval() data = open(profile_path, 'rb').read() self.assertGreater(len(data), 0) profile_pb = profiler_pb2.Profile() profile_pb.ParseFromString(data) self.assertGreater(len(profile_pb.events), 0) for event in profile_pb.events: if event.type == profiler_pb2.Event.GPUKernel: if not event.detail_info and not event.name.startswith("MEM"): raise Exception( "Kernel %s missing event. Has this kernel been recorded by RecordEvent?" % event.name) elif event.type == profiler_pb2.Event.CPU and ( event.name.startswith("Driver API") or event.name.startswith("Runtime API")): print("Warning: unregister", event.name) def test_cpu_profiler(self): self.net_profiler('CPU') self.net_profiler('CPU', use_parallel_executor=True) @unittest.skipIf(not core.is_compiled_with_cuda(), "profiler is enabled only with GPU") def test_cuda_profiler(self): self.net_profiler('GPU') self.net_profiler('GPU', use_parallel_executor=True) @unittest.skipIf(not core.is_compiled_with_cuda(), "profiler is enabled only with GPU") def test_all_profiler(self): self.net_profiler('All') self.net_profiler('All', use_parallel_executor=True) if __name__ == '__main__': unittest.main()