test_imperative_basic.py 21.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import contextlib
16 17 18 19 20
import unittest
import numpy as np

import paddle.fluid as fluid
from paddle.fluid import core
21
from paddle.fluid import Linear
M
minqiyang 已提交
22
from test_imperative_base import new_program_scope
23
import paddle.fluid.dygraph_utils as dygraph_utils
24 25


26
class MyLayer(fluid.Layer):
27 28
    def __init__(self):
        super(MyLayer, self).__init__()
29 30

    def forward(self, inputs):
M
minqiyang 已提交
31
        x = fluid.layers.relu(inputs)
32
        self._x_for_debug = x
X
Xin Pan 已提交
33 34 35
        x = fluid.layers.elementwise_mul(x, x)
        x = fluid.layers.reduce_sum(x)
        return [x]
36 37


38
class MLP(fluid.Layer):
39 40
    def __init__(self, input_size):
        super(MLP, self).__init__()
S
songyouwei 已提交
41
        self._linear1 = None
42 43 44 45 46 47 48 49 50 51 52 53 54 55
        self._linear1 = Linear(
            input_size,
            3,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)))
        self._linear2 = Linear(
            3,
            4,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)))
X
Xin Pan 已提交
56 57

    def forward(self, inputs):
58 59
        x = self._linear1(inputs)
        x = self._linear2(x)
X
Xin Pan 已提交
60 61 62 63
        x = fluid.layers.reduce_sum(x)
        return x


64
class SimpleRNNCell(fluid.Layer):
65 66
    def __init__(self, step_input_size, hidden_size, output_size, param_attr):
        super(SimpleRNNCell, self).__init__()
67 68 69
        self.step_input_size = step_input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
70 71
        self._dtype = core.VarDesc.VarType.FP32
        self.param_attr = param_attr
72 73 74 75

        i2h_param_shape = [self.step_input_size, self.hidden_size]
        h2h_param_shape = [self.hidden_size, self.hidden_size]
        h2o_param_shape = [self.output_size, self.hidden_size]
S
songyouwei 已提交
76
        self._i2h_w = None
77 78
        self._i2h_w = self.create_parameter(
            attr=self.param_attr,
79 80 81
            shape=i2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
82 83
        self._h2h_w = self.create_parameter(
            attr=self.param_attr,
84 85 86
            shape=h2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
87 88
        self._h2o_w = self.create_parameter(
            attr=self.param_attr,
89 90 91 92 93
            shape=h2o_param_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input, pre_hidden):
94 95 96 97 98 99
        tmp_i2h = self.create_variable(dtype=self._dtype)
        tmp_h2h = self.create_variable(dtype=self._dtype)
        hidden = self.create_variable(dtype=self._dtype)
        out = self.create_variable(dtype=self._dtype)
        softmax_out = self.create_variable(dtype=self._dtype)
        reduce_out = self.create_variable(dtype=self._dtype)
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        self._helper.append_op(
            type="mul",
            inputs={"X": input,
                    "Y": self._i2h_w},
            outputs={"Out": tmp_i2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="mul",
            inputs={"X": pre_hidden,
                    "Y": self._h2h_w},
            outputs={"Out": tmp_h2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="elementwise_add",
            inputs={'X': tmp_h2h,
                    'Y': tmp_i2h},
            outputs={'Out': hidden},
            attrs={'axis': -1,
                   'use_mkldnn': False})
123
        hidden = self._helper.append_activation(hidden, act='tanh')
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

        self._helper.append_op(
            type="mul",
            inputs={"X": hidden,
                    "Y": self._h2o_w},
            outputs={"Out": out},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="softmax",
            inputs={"X": out},
            outputs={"Out": softmax_out},
            attrs={"use_cudnn": False})

        self._helper.append_op(
            type='reduce_sum',
            inputs={'X': softmax_out},
            outputs={'Out': reduce_out},
143
            attrs={'keep_dim': False,
144 145 146 147 148
                   'reduce_all': True})

        return reduce_out, hidden


149
class SimpleRNN(fluid.Layer):
150 151
    def __init__(self):
        super(SimpleRNN, self).__init__()
J
JiabinYang 已提交
152 153 154 155 156 157
        self.seq_len = 4
        self._cell = SimpleRNNCell(
            3,
            3,
            3,
            fluid.ParamAttr(initializer=fluid.initializer.Constant(value=0.1)))
J
JiabinYang 已提交
158 159

    def forward(self, inputs):
J
JiabinYang 已提交
160
        outs = list()
J
JiabinYang 已提交
161 162
        pre_hiddens = list()

163
        init_hidden = self.create_parameter(
J
JiabinYang 已提交
164 165 166 167 168 169
            attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            shape=[1, 3],
            dtype='float32',
            is_bias=False)
        pre_hidden = init_hidden
J
JiabinYang 已提交
170
        for i in range(self.seq_len):
J
JiabinYang 已提交
171 172 173
            input = fluid.layers.slice(
                inputs, axes=[1], starts=[i], ends=[i + 1])
            input = fluid.layers.reshape(input, shape=[1, 3])
J
JiabinYang 已提交
174 175
            out_softmax, pre_hidden = self._cell(input, pre_hidden)
            outs.append(out_softmax)
J
JiabinYang 已提交
176

J
JiabinYang 已提交
177
        return outs, pre_hiddens
J
JiabinYang 已提交
178 179


M
minqiyang 已提交
180
class TestImperative(unittest.TestCase):
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
    def test_isinstance(self):
        var = fluid.layers.data(shape=[1], name='x', dtype='float32')
        self.assertTrue(isinstance(var, fluid.Variable))
        with fluid.dygraph.guard():
            var_base = fluid.dygraph.base.to_variable(np.array([3, 4, 5]))
            self.assertTrue(isinstance(var_base, core.VarBase))
            self.assertTrue(isinstance(var_base, fluid.Variable))

    def test_create_VarBase(self):
        x = np.ones([2, 2], np.float32)
        y = np.zeros([3, 3], np.float32)
        with fluid.dygraph.guard():
            tmp = fluid.core.VarBase(value=x, place=fluid.core.CPUPlace())
            tmp2 = fluid.core.VarBase(y, fluid.core.CPUPlace())
            tmp3 = fluid.dygraph.base.to_variable(x)
            tmp4 = fluid.core.VarBase(y)
            tmp5 = fluid.core.VarBase(value=x)

            self.assertTrue(np.array_equal(x, tmp.numpy()))
            self.assertTrue(np.array_equal(y, tmp2.numpy()))
            self.assertTrue(np.array_equal(x, tmp3.numpy()))
            self.assertTrue(np.array_equal(y, tmp4.numpy()))
            self.assertTrue(np.array_equal(x, tmp5.numpy()))

M
minqiyang 已提交
205 206
    def test_sum_op(self):
        x = np.ones([2, 2], np.float32)
L
lujun 已提交
207
        with fluid.dygraph.guard():
M
minqiyang 已提交
208 209
            inputs = []
            for _ in range(10):
210 211 212
                tmp = fluid.dygraph.base.to_variable(x)
                tmp.stop_gradient = False
                inputs.append(tmp)
M
minqiyang 已提交
213 214
            ret = fluid.layers.sums(inputs)
            loss = fluid.layers.reduce_sum(ret)
L
lujun 已提交
215
            loss.backward()
216 217 218
        with fluid.dygraph.guard():
            inputs2 = []
            for _ in range(10):
219 220 221
                tmp = fluid.dygraph.base.to_variable(x)
                tmp.stop_gradient = False
                inputs2.append(tmp)
222 223 224 225 226 227
            ret2 = fluid.layers.sums(inputs2)
            loss2 = fluid.layers.reduce_sum(ret2)
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            loss2.backward(backward_strategy)

228 229
            self.assertTrue(np.allclose(ret.numpy(), x * 10))
            self.assertTrue(np.allclose(inputs[0].gradient(), x))
230 231 232
            self.assertTrue(np.allclose(ret2.numpy(), x * 10))
            a = inputs2[0].gradient()
            self.assertTrue(np.allclose(inputs2[0].gradient(), x))
M
minqiyang 已提交
233

234 235 236 237 238 239 240 241 242
    def test_empty_var(self):
        with fluid.dygraph.guard():
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(
                name="X", shape=[-1, 23, 48], dtype='float32')
            try:
                new_variable.numpy()
            except Exception as e:
243
                assert type(e) == core.EnforceNotMet
244 245 246 247

            try:
                new_variable.backward()
            except Exception as e:
248
                assert type(e) == core.EnforceNotMet
249 250 251 252

            try:
                new_variable.clear_gradient()
            except Exception as e:
253
                assert type(e) == core.EnforceNotMet
254 255 256 257 258 259 260 261 262 263 264 265 266

    def test_empty_grad(self):
        with fluid.dygraph.guard():
            x = np.ones([2, 2], np.float32)
            new_var = fluid.dygraph.base.to_variable(x)
            try:
                new_var.gradient()
            except Exception as e:
                assert type(e) == ValueError

            try:
                new_var.clear_gradient()
            except Exception as e:
267
                assert type(e) == core.EnforceNotMet
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

        with fluid.dygraph.guard():
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(
                name="X", shape=[-1, 23, 48], dtype='float32')
            try:
                new_variable.gradient()
            except Exception as e:
                assert type(e) == ValueError

    def test_set_persistable(self):
        with fluid.dygraph.guard():
            x = np.ones([2, 2], np.float32)
            new_var = fluid.dygraph.base.to_variable(x)
            self.assertFalse(new_var.persistable)
            new_var.persistable = True
285
            self.assertTrue(new_var.persistable)
286

M
minqiyang 已提交
287
    def test_layer(self):
L
lujun 已提交
288
        with fluid.dygraph.guard():
M
minqiyang 已提交
289 290
            cl = core.Layer()
            cl.forward([])
291
            l = fluid.Layer("l")
M
minqiyang 已提交
292 293 294 295
            self.assertRaises(NotImplementedError, l.forward, [])

    def test_layer_in_out(self):
        np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
L
lujun 已提交
296 297
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
298
            var_inp.stop_gradient = False
299
            l = MyLayer()
300
            print(var_inp)
M
minqiyang 已提交
301 302
            x = l(var_inp)[0]
            self.assertIsNotNone(x)
303
            dy_out = x.numpy()
L
lujun 已提交
304
            x.backward()
305
            dy_grad = l._x_for_debug.gradient()
M
minqiyang 已提交
306

307 308
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
309
            var_inp2.stop_gradient = False
310
            l2 = MyLayer()
311 312 313 314 315 316 317 318
            x2 = l2(var_inp2)[0]
            self.assertIsNotNone(x2)
            dy_out2 = x2.numpy()
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            x2.backward(backward_strategy)
            dy_grad2 = l2._x_for_debug.gradient()

M
minqiyang 已提交
319 320 321
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[3], append_batch_size=False)
322
            l = MyLayer()
M
minqiyang 已提交
323 324 325 326 327 328 329 330 331 332 333 334
            x = l(inp)[0]
            param_grads = fluid.backward.append_backward(
                x, parameter_list=[l._x_for_debug.name])[0]
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[x.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
335 336
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad2, static_grad))
M
minqiyang 已提交
337 338 339

    def test_mlp(self):
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
L
lujun 已提交
340 341
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
342
            mlp = MLP(input_size=2)
M
minqiyang 已提交
343
            out = mlp(var_inp)
344
            dy_out = out.numpy()
L
lujun 已提交
345
            out.backward()
346
            dy_grad = mlp._linear1.weight.gradient()
M
minqiyang 已提交
347

348 349
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
350
            mlp2 = MLP(input_size=2)
351 352 353 354 355
            out2 = mlp2(var_inp2)
            dy_out2 = out2.numpy()
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            out2.backward(backward_strategy)
356
            dy_grad2 = mlp2._linear1.weight.gradient()
357

M
minqiyang 已提交
358 359 360
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
361
            mlp = MLP(input_size=2)
M
minqiyang 已提交
362 363
            out = mlp(inp)
            param_grads = fluid.backward.append_backward(
364
                out, parameter_list=[mlp._linear1.weight.name])[0]
M
minqiyang 已提交
365 366 367 368 369 370 371 372 373 374
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            exe.run(fluid.default_startup_program())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[out.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
375 376
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad2, static_grad))
M
minqiyang 已提交
377 378

        params = mlp.parameters(True)
379 380 381 382
        self.assertEqual("linear_0.w_0", params[0].name)
        self.assertEqual("linear_0.b_0", params[1].name)
        self.assertEqual("linear_1.w_0", params[2].name)
        self.assertEqual("linear_1.b_0", params[3].name)
M
minqiyang 已提交
383 384 385
        self.assertEqual(len(params), 4)

        sublayers = mlp.sublayers(True)
386 387
        self.assertEqual(mlp._linear1, sublayers[0])
        self.assertEqual(mlp._linear2, sublayers[1])
M
minqiyang 已提交
388 389
        self.assertEqual(len(sublayers), 2)

X
Xin Pan 已提交
390
    def test_dygraph_vs_static(self):
391 392
        np_inp1 = np.random.rand(4, 3, 3)
        np_inp2 = np.random.rand(4, 3, 3)
X
Xin Pan 已提交
393 394 395

        # dynamic graph
        with fluid.dygraph.guard():
396 397 398
            inp1 = fluid.dygraph.to_variable(np_inp1)
            inp2 = fluid.dygraph.to_variable(np_inp2)
            if np.sum(np_inp1) < np.sum(np_inp2):
X
Xin Pan 已提交
399 400 401
                x = fluid.layers.elementwise_add(inp1, inp2)
            else:
                x = fluid.layers.elementwise_sub(inp1, inp2)
L
lujun 已提交
402
            dygraph_result = x.numpy()
X
Xin Pan 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435

        # static graph
        with new_program_scope():
            inp_data1 = fluid.layers.data(
                name='inp1', shape=[3, 3], dtype=np.float32)
            inp_data2 = fluid.layers.data(
                name='inp2', shape=[3, 3], dtype=np.float32)

            a = fluid.layers.expand(
                fluid.layers.reshape(
                    fluid.layers.reduce_sum(inp_data1), [1, 1]), [4, 1])
            b = fluid.layers.expand(
                fluid.layers.reshape(
                    fluid.layers.reduce_sum(inp_data2), [1, 1]), [4, 1])
            cond = fluid.layers.less_than(x=a, y=b)

            ie = fluid.layers.IfElse(cond)
            with ie.true_block():
                d1 = ie.input(inp_data1)
                d2 = ie.input(inp_data2)
                d3 = fluid.layers.elementwise_add(d1, d2)
                ie.output(d3)

            with ie.false_block():
                d1 = ie.input(inp_data1)
                d2 = ie.input(inp_data2)
                d3 = fluid.layers.elementwise_sub(d1, d2)
                ie.output(d3)
            out = ie()

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            static_result = exe.run(fluid.default_main_program(),
436 437
                                    feed={'inp1': np_inp1,
                                          'inp2': np_inp2},
X
Xin Pan 已提交
438 439 440
                                    fetch_list=out)[0]
        self.assertTrue(np.allclose(dygraph_result, static_result))

M
minqiyang 已提交
441 442 443 444 445
    def test_rnn(self):
        np_inp = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0],
                           [10.0, 11.0, 12.0]])
        np_inp = np_inp.reshape((1, 4, 3))
        np_inp = np_inp.astype(np.float32)
L
lujun 已提交
446 447
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
M
minqiyang 已提交
448
            var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3])
449
            simple_rnn = SimpleRNN()
M
minqiyang 已提交
450
            outs, pre_hiddens = simple_rnn.forward(var_inp)
451
            dy_out = outs[3].numpy()
L
lujun 已提交
452
            outs[3].backward()
453 454 455
            dy_grad_h2o = simple_rnn._cell._h2o_w.gradient()
            dy_grad_h2h = simple_rnn._cell._h2h_w.gradient()
            dy_grad_i2h = simple_rnn._cell._i2h_w.gradient()
M
minqiyang 已提交
456

457 458 459
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
            var_inp2 = fluid.layers.reshape(var_inp2, shape=[1, 4, 3])
460
            simple_rnn2 = SimpleRNN()
461 462 463 464 465 466 467 468 469
            outs2, pre_hiddens2 = simple_rnn2.forward(var_inp2)
            dy_out2 = outs2[3].numpy()
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            outs2[3].backward(backward_strategy)
            dy_grad_h2o2 = simple_rnn2._cell._h2o_w.gradient()
            dy_grad_h2h2 = simple_rnn2._cell._h2h_w.gradient()
            dy_grad_i2h2 = simple_rnn2._cell._i2h_w.gradient()

M
minqiyang 已提交
470 471 472
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[1, 4, 3], append_batch_size=False)
473
            simple_rnn = SimpleRNN()
M
minqiyang 已提交
474 475 476 477 478 479 480 481 482 483
            outs, pre_hiddens = simple_rnn(inp)
            param_grads = fluid.backward.append_backward(outs[3])
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            static_out, static_grad_h2o, static_grad_h2h, static_grad_i2h = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[
                    outs[3].name, param_grads[0][1].name,
                    param_grads[1][1].name, param_grads[2][1].name
                ])
484

M
minqiyang 已提交
485 486 487 488
        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad_h2o, static_grad_h2o))
        self.assertTrue(np.allclose(dy_grad_h2h, static_grad_h2h))
        self.assertTrue(np.allclose(dy_grad_i2h, static_grad_i2h))
489 490 491 492
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad_h2o2, static_grad_h2o))
        self.assertTrue(np.allclose(dy_grad_h2h2, static_grad_h2h))
        self.assertTrue(np.allclose(dy_grad_i2h2, static_grad_i2h))
M
minqiyang 已提交
493

494 495 496 497 498 499 500
    def test_layer_attrs(self):
        layer = fluid.dygraph.Layer("test")
        layer.test_attr = 1
        self.assertFalse(hasattr(layer, "whatever"))
        self.assertTrue(hasattr(layer, "test_attr"))
        self.assertEqual(layer.test_attr, 1)

S
songyouwei 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513
        my_layer = MyLayer()
        my_layer.w1 = my_layer.create_parameter([3, 3])
        my_layer.add_parameter('w2', None)
        self.assertEqual(len(my_layer.parameters()), 1)
        self.assertRaises(TypeError, my_layer.__setattr__, 'w1', 'str')
        my_layer.w1 = None
        self.assertEqual(len(my_layer.parameters()), 0)
        my_layer.l1 = fluid.dygraph.Linear(3, 3)
        self.assertEqual(len(my_layer.sublayers()), 1)
        self.assertRaises(TypeError, my_layer.__setattr__, 'l1', 'str')
        my_layer.l1 = None
        self.assertEqual(len(my_layer.sublayers()), 0)

514

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
class TestDygraphUtils(unittest.TestCase):
    def test_append_activation_in_dygraph_exception(self):
        with new_program_scope():
            np_inp = np.random.random(size=(10, 20, 30)).astype(np.float32)
            a = fluid.layers.data("a", [10, 20])
            func = dygraph_utils._append_activation_in_dygraph
            self.assertRaises(AssertionError, func, a, act="sigmoid")

    def test_append_activation_in_dygraph1(self):
        a_np = np.random.random(size=(10, 20, 30)).astype(np.float32)
        func = dygraph_utils._append_activation_in_dygraph
        with fluid.dygraph.guard():
            a = fluid.dygraph.to_variable(a_np)
            res1 = func(a, act="hard_sigmoid")
            res2 = fluid.layers.hard_sigmoid(a)
            self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))

    def test_append_activation_in_dygraph2(self):
        a_np = np.random.random(size=(10, 20, 30)).astype(np.float32)
        func = dygraph_utils._append_activation_in_dygraph
        with fluid.dygraph.guard():
            a = fluid.dygraph.to_variable(a_np)
            res1 = func(a, act="sigmoid", use_mkldnn=True, use_cudnn=True)
            res2 = fluid.layers.sigmoid(a)
            self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))

    def test_append_bias_in_dygraph_exception(self):
        with new_program_scope():
            np_inp = np.random.random(size=(10, 20, 30)).astype(np.float32)
            a = fluid.layers.data("a", [10, 20])
            func = dygraph_utils._append_bias_in_dygraph
            self.assertRaises(AssertionError, func, a)

    def test_append_bias_in_dygraph(self):
        a_np = np.random.random(size=(10, 20, 30)).astype(np.float32)
        func = dygraph_utils._append_bias_in_dygraph
        with fluid.dygraph.guard():
            a = fluid.dygraph.to_variable(a_np)
            res1 = func(a, bias=a)
            res2 = a + a
            self.assertTrue(np.array_equal(res1.numpy(), res2.numpy()))


558 559
if __name__ == '__main__':
    unittest.main()