test_imperative_basic.py 17.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import contextlib
16 17 18 19 20
import unittest
import numpy as np

import paddle.fluid as fluid
from paddle.fluid import core
21
from paddle.fluid import FC
M
minqiyang 已提交
22
from test_imperative_base import new_program_scope
23 24


25
class MyLayer(fluid.Layer):
X
Xin Pan 已提交
26 27
    def __init__(self, name_scope):
        super(MyLayer, self).__init__(name_scope)
28 29

    def forward(self, inputs):
M
minqiyang 已提交
30
        x = fluid.layers.relu(inputs)
31
        self._x_for_debug = x
X
Xin Pan 已提交
32 33 34
        x = fluid.layers.elementwise_mul(x, x)
        x = fluid.layers.reduce_sum(x)
        return [x]
35 36


37
class MLP(fluid.Layer):
X
Xin Pan 已提交
38 39 40 41
    def __init__(self, name_scope):
        super(MLP, self).__init__(name_scope)
        self._fc1 = FC(self.full_name(),
                       3,
42 43 44
                       param_attr=fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)),
                       bias_attr=fluid.ParamAttr(
X
Xin Pan 已提交
45
                           initializer=fluid.initializer.Constant(value=0.1)))
X
Xin Pan 已提交
46 47
        self._fc2 = FC(self.full_name(),
                       4,
48 49 50
                       param_attr=fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)),
                       bias_attr=fluid.ParamAttr(
X
Xin Pan 已提交
51 52 53
                           initializer=fluid.initializer.Constant(value=0.1)))

    def forward(self, inputs):
M
minqiyang 已提交
54
        x = self._fc1(inputs)
X
Xin Pan 已提交
55 56 57 58 59
        x = self._fc2(x)
        x = fluid.layers.reduce_sum(x)
        return x


60
class SimpleRNNCell(fluid.Layer):
X
Xin Pan 已提交
61 62 63
    def __init__(self, name_scope, step_input_size, hidden_size, output_size,
                 param_attr):
        super(SimpleRNNCell, self).__init__(name_scope)
64 65 66
        self.step_input_size = step_input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
67 68
        self._dtype = core.VarDesc.VarType.FP32
        self.param_attr = param_attr
69

70
    def _build_once(self, inputs, pre_hidden):
71 72 73
        i2h_param_shape = [self.step_input_size, self.hidden_size]
        h2h_param_shape = [self.hidden_size, self.hidden_size]
        h2o_param_shape = [self.output_size, self.hidden_size]
74 75
        self._i2h_w = self.create_parameter(
            attr=self.param_attr,
76 77 78
            shape=i2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
79 80
        self._h2h_w = self.create_parameter(
            attr=self.param_attr,
81 82 83
            shape=h2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
84 85
        self._h2o_w = self.create_parameter(
            attr=self.param_attr,
86 87 88 89 90 91
            shape=h2o_param_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input, pre_hidden):

92 93 94 95 96 97
        tmp_i2h = self.create_variable(dtype=self._dtype)
        tmp_h2h = self.create_variable(dtype=self._dtype)
        hidden = self.create_variable(dtype=self._dtype)
        out = self.create_variable(dtype=self._dtype)
        softmax_out = self.create_variable(dtype=self._dtype)
        reduce_out = self.create_variable(dtype=self._dtype)
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
        self._helper.append_op(
            type="mul",
            inputs={"X": input,
                    "Y": self._i2h_w},
            outputs={"Out": tmp_i2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="mul",
            inputs={"X": pre_hidden,
                    "Y": self._h2h_w},
            outputs={"Out": tmp_h2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="elementwise_add",
            inputs={'X': tmp_h2h,
                    'Y': tmp_i2h},
            outputs={'Out': hidden},
            attrs={'axis': -1,
                   'use_mkldnn': False})
121
        hidden = self._helper.append_activation(hidden, act='tanh')
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

        self._helper.append_op(
            type="mul",
            inputs={"X": hidden,
                    "Y": self._h2o_w},
            outputs={"Out": out},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="softmax",
            inputs={"X": out},
            outputs={"Out": softmax_out},
            attrs={"use_cudnn": False})

        self._helper.append_op(
            type='reduce_sum',
            inputs={'X': softmax_out},
            outputs={'Out': reduce_out},
141
            attrs={'dim': [],
142 143 144 145 146 147
                   'keep_dim': False,
                   'reduce_all': True})

        return reduce_out, hidden


148
class SimpleRNN(fluid.Layer):
X
Xin Pan 已提交
149 150
    def __init__(self, name_scope):
        super(SimpleRNN, self).__init__(name_scope)
J
JiabinYang 已提交
151 152
        self.seq_len = 4
        self._cell = SimpleRNNCell(
X
Xin Pan 已提交
153
            self.full_name(),
J
JiabinYang 已提交
154 155 156 157
            3,
            3,
            3,
            fluid.ParamAttr(initializer=fluid.initializer.Constant(value=0.1)))
J
JiabinYang 已提交
158 159

    def forward(self, inputs):
J
JiabinYang 已提交
160
        outs = list()
J
JiabinYang 已提交
161 162
        pre_hiddens = list()

163
        init_hidden = self.create_parameter(
J
JiabinYang 已提交
164 165 166 167 168 169
            attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            shape=[1, 3],
            dtype='float32',
            is_bias=False)
        pre_hidden = init_hidden
J
JiabinYang 已提交
170
        for i in range(self.seq_len):
J
JiabinYang 已提交
171 172 173
            input = fluid.layers.slice(
                inputs, axes=[1], starts=[i], ends=[i + 1])
            input = fluid.layers.reshape(input, shape=[1, 3])
J
JiabinYang 已提交
174 175
            out_softmax, pre_hidden = self._cell(input, pre_hidden)
            outs.append(out_softmax)
J
JiabinYang 已提交
176

J
JiabinYang 已提交
177
        return outs, pre_hiddens
J
JiabinYang 已提交
178 179


M
minqiyang 已提交
180 181 182
class TestImperative(unittest.TestCase):
    def test_sum_op(self):
        x = np.ones([2, 2], np.float32)
L
lujun 已提交
183
        with fluid.dygraph.guard():
M
minqiyang 已提交
184 185
            inputs = []
            for _ in range(10):
186 187 188
                tmp = fluid.dygraph.base.to_variable(x)
                tmp.stop_gradient = False
                inputs.append(tmp)
M
minqiyang 已提交
189 190
            ret = fluid.layers.sums(inputs)
            loss = fluid.layers.reduce_sum(ret)
L
lujun 已提交
191
            loss.backward()
192 193 194
        with fluid.dygraph.guard():
            inputs2 = []
            for _ in range(10):
195 196 197
                tmp = fluid.dygraph.base.to_variable(x)
                tmp.stop_gradient = False
                inputs2.append(tmp)
198 199 200 201 202 203
            ret2 = fluid.layers.sums(inputs2)
            loss2 = fluid.layers.reduce_sum(ret2)
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            loss2.backward(backward_strategy)

204 205
            self.assertTrue(np.allclose(ret.numpy(), x * 10))
            self.assertTrue(np.allclose(inputs[0].gradient(), x))
206 207 208
            self.assertTrue(np.allclose(ret2.numpy(), x * 10))
            a = inputs2[0].gradient()
            self.assertTrue(np.allclose(inputs2[0].gradient(), x))
M
minqiyang 已提交
209

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    def test_empty_var(self):
        with fluid.dygraph.guard():
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(
                name="X", shape=[-1, 23, 48], dtype='float32')
            try:
                new_variable.numpy()
            except Exception as e:
                assert type(e) == ValueError

            try:
                new_variable.backward()
            except Exception as e:
                assert type(e) == ValueError

            try:
                new_variable.clear_gradient()
            except Exception as e:
                assert type(e) == ValueError

    def test_empty_grad(self):
        with fluid.dygraph.guard():
            x = np.ones([2, 2], np.float32)
            new_var = fluid.dygraph.base.to_variable(x)
            try:
                new_var.gradient()
            except Exception as e:
                assert type(e) == ValueError

            try:
                new_var.clear_gradient()
            except Exception as e:
                assert type(e) == ValueError

        with fluid.dygraph.guard():
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(
                name="X", shape=[-1, 23, 48], dtype='float32')
            try:
                new_variable.gradient()
            except Exception as e:
                assert type(e) == ValueError

    def test_set_persistable(self):
        with fluid.dygraph.guard():
            x = np.ones([2, 2], np.float32)
            new_var = fluid.dygraph.base.to_variable(x)
            self.assertFalse(new_var.persistable)
            new_var.persistable = True
            self.assertFalse(new_var.persistable)

M
minqiyang 已提交
263
    def test_layer(self):
L
lujun 已提交
264
        with fluid.dygraph.guard():
M
minqiyang 已提交
265 266
            cl = core.Layer()
            cl.forward([])
267
            l = fluid.Layer("l")
M
minqiyang 已提交
268 269 270 271
            self.assertRaises(NotImplementedError, l.forward, [])

    def test_layer_in_out(self):
        np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
L
lujun 已提交
272 273
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
274
            var_inp.stop_gradient = False
M
minqiyang 已提交
275 276 277
            l = MyLayer("my_layer")
            x = l(var_inp)[0]
            self.assertIsNotNone(x)
278
            dy_out = x.numpy()
L
lujun 已提交
279
            x.backward()
280
            dy_grad = l._x_for_debug.gradient()
M
minqiyang 已提交
281

282 283
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
284
            var_inp2.stop_gradient = False
285 286 287 288 289 290 291 292 293
            l2 = MyLayer("my_layer")
            x2 = l2(var_inp2)[0]
            self.assertIsNotNone(x2)
            dy_out2 = x2.numpy()
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            x2.backward(backward_strategy)
            dy_grad2 = l2._x_for_debug.gradient()

M
minqiyang 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[3], append_batch_size=False)
            l = MyLayer("my_layer")
            x = l(inp)[0]
            param_grads = fluid.backward.append_backward(
                x, parameter_list=[l._x_for_debug.name])[0]
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[x.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
310 311
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad2, static_grad))
M
minqiyang 已提交
312 313 314

    def test_mlp(self):
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
L
lujun 已提交
315 316
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
M
minqiyang 已提交
317 318
            mlp = MLP("mlp")
            out = mlp(var_inp)
319
            dy_out = out.numpy()
L
lujun 已提交
320
            out.backward()
321
            dy_grad = mlp._fc1._w.gradient()
M
minqiyang 已提交
322

323 324 325 326 327 328 329 330 331 332
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
            mlp2 = MLP("mlp")
            out2 = mlp2(var_inp2)
            dy_out2 = out2.numpy()
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            out2.backward(backward_strategy)
            dy_grad2 = mlp2._fc1._w.gradient()

M
minqiyang 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            mlp = MLP("mlp")
            out = mlp(inp)
            param_grads = fluid.backward.append_backward(
                out, parameter_list=[mlp._fc1._w.name])[0]
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            exe.run(fluid.default_startup_program())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[out.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
350 351
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad2, static_grad))
M
minqiyang 已提交
352 353

        params = mlp.parameters(True)
354 355 356 357
        self.assertEqual("mlp/MLP_0/FC_0.w_0", params[0].name)
        self.assertEqual("mlp/MLP_0/FC_0.b_0", params[1].name)
        self.assertEqual("mlp/MLP_0/FC_1.w_0", params[2].name)
        self.assertEqual("mlp/MLP_0/FC_1.b_0", params[3].name)
M
minqiyang 已提交
358 359 360 361 362 363 364
        self.assertEqual(len(params), 4)

        sublayers = mlp.sublayers(True)
        self.assertEqual(mlp._fc1, sublayers[0])
        self.assertEqual(mlp._fc2, sublayers[1])
        self.assertEqual(len(sublayers), 2)

X
Xin Pan 已提交
365 366 367 368 369 370 371 372 373 374
    def test_dygraph_vs_static(self):
        inp1 = np.random.rand(4, 3, 3)
        inp2 = np.random.rand(4, 3, 3)

        # dynamic graph
        with fluid.dygraph.guard():
            if np.sum(inp1) < np.sum(inp2):
                x = fluid.layers.elementwise_add(inp1, inp2)
            else:
                x = fluid.layers.elementwise_sub(inp1, inp2)
L
lujun 已提交
375
            dygraph_result = x.numpy()
X
Xin Pan 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413

        # static graph
        with new_program_scope():
            inp_data1 = fluid.layers.data(
                name='inp1', shape=[3, 3], dtype=np.float32)
            inp_data2 = fluid.layers.data(
                name='inp2', shape=[3, 3], dtype=np.float32)

            a = fluid.layers.expand(
                fluid.layers.reshape(
                    fluid.layers.reduce_sum(inp_data1), [1, 1]), [4, 1])
            b = fluid.layers.expand(
                fluid.layers.reshape(
                    fluid.layers.reduce_sum(inp_data2), [1, 1]), [4, 1])
            cond = fluid.layers.less_than(x=a, y=b)

            ie = fluid.layers.IfElse(cond)
            with ie.true_block():
                d1 = ie.input(inp_data1)
                d2 = ie.input(inp_data2)
                d3 = fluid.layers.elementwise_add(d1, d2)
                ie.output(d3)

            with ie.false_block():
                d1 = ie.input(inp_data1)
                d2 = ie.input(inp_data2)
                d3 = fluid.layers.elementwise_sub(d1, d2)
                ie.output(d3)
            out = ie()

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            static_result = exe.run(fluid.default_main_program(),
                                    feed={'inp1': inp1,
                                          'inp2': inp2},
                                    fetch_list=out)[0]
        self.assertTrue(np.allclose(dygraph_result, static_result))

M
minqiyang 已提交
414 415 416 417 418
    def test_rnn(self):
        np_inp = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0],
                           [10.0, 11.0, 12.0]])
        np_inp = np_inp.reshape((1, 4, 3))
        np_inp = np_inp.astype(np.float32)
L
lujun 已提交
419 420
        with fluid.dygraph.guard():
            var_inp = fluid.dygraph.base.to_variable(np_inp)
M
minqiyang 已提交
421 422 423
            var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3])
            simple_rnn = SimpleRNN("simple_rnn")
            outs, pre_hiddens = simple_rnn.forward(var_inp)
424
            dy_out = outs[3].numpy()
L
lujun 已提交
425
            outs[3].backward()
426 427 428
            dy_grad_h2o = simple_rnn._cell._h2o_w.gradient()
            dy_grad_h2h = simple_rnn._cell._h2h_w.gradient()
            dy_grad_i2h = simple_rnn._cell._i2h_w.gradient()
M
minqiyang 已提交
429

430 431 432 433 434 435 436 437 438 439 440 441 442
        with fluid.dygraph.guard():
            var_inp2 = fluid.dygraph.base.to_variable(np_inp)
            var_inp2 = fluid.layers.reshape(var_inp2, shape=[1, 4, 3])
            simple_rnn2 = SimpleRNN("simple_rnn")
            outs2, pre_hiddens2 = simple_rnn2.forward(var_inp2)
            dy_out2 = outs2[3].numpy()
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            outs2[3].backward(backward_strategy)
            dy_grad_h2o2 = simple_rnn2._cell._h2o_w.gradient()
            dy_grad_h2h2 = simple_rnn2._cell._h2h_w.gradient()
            dy_grad_i2h2 = simple_rnn2._cell._i2h_w.gradient()

M
minqiyang 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456
        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[1, 4, 3], append_batch_size=False)
            simple_rnn = SimpleRNN("simple_rnn")
            outs, pre_hiddens = simple_rnn(inp)
            param_grads = fluid.backward.append_backward(outs[3])
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            static_out, static_grad_h2o, static_grad_h2h, static_grad_i2h = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[
                    outs[3].name, param_grads[0][1].name,
                    param_grads[1][1].name, param_grads[2][1].name
                ])
457

M
minqiyang 已提交
458 459 460 461
        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad_h2o, static_grad_h2o))
        self.assertTrue(np.allclose(dy_grad_h2h, static_grad_h2h))
        self.assertTrue(np.allclose(dy_grad_i2h, static_grad_i2h))
462 463 464 465
        self.assertTrue(np.allclose(dy_out2, static_out))
        self.assertTrue(np.allclose(dy_grad_h2o2, static_grad_h2o))
        self.assertTrue(np.allclose(dy_grad_h2h2, static_grad_h2h))
        self.assertTrue(np.allclose(dy_grad_i2h2, static_grad_i2h))
M
minqiyang 已提交
466

467 468 469 470 471 472 473
    def test_layer_attrs(self):
        layer = fluid.dygraph.Layer("test")
        layer.test_attr = 1
        self.assertFalse(hasattr(layer, "whatever"))
        self.assertTrue(hasattr(layer, "test_attr"))
        self.assertEqual(layer.test_attr, 1)

474 475 476

if __name__ == '__main__':
    unittest.main()