clip.py 35.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
F
fengjiayi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
F
fengjiayi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
update  
fengjiayi 已提交
14

F
fengjiayi 已提交
15
import copy
16
import warnings
F
fengjiayi 已提交
17

Y
Yu Yang 已提交
18
import functools
W
WangXi 已提交
19
import paddle
20 21
from . import layers
from . import framework
F
fengjiayi 已提交
22
from . import core
C
Chengmo 已提交
23
from . import name_scope
24
from .dygraph import base as imperative_base
W
WangXi 已提交
25
from .data_feeder import check_variable_and_dtype
26
from .framework import _non_static_mode, in_dygraph_mode, _in_legacy_dygraph
W
WangXi 已提交
27
from .layer_helper import LayerHelper
28
from .framework import default_main_program
29
from paddle import _C_ops, _legacy_C_ops
Y
Yu Yang 已提交
30

F
fengjiayi 已提交
31
__all__ = [
32 33 34 35 36
    'set_gradient_clip',
    'ErrorClipByValue',
    'ClipGradByValue',
    'ClipGradByNorm',
    'ClipGradByGlobalNorm',
F
fengjiayi 已提交
37
]
Y
Yu Yang 已提交
38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
_clip_by_global_norm_using_mp_type_flag = False


def _clip_by_global_norm_using_mp_type(*args):
    global _clip_by_global_norm_using_mp_type_flag
    assert len(args) <= 1
    if len(args) == 1:
        assert isinstance(args[0], bool)
        old_value = _clip_by_global_norm_using_mp_type_flag
        _clip_by_global_norm_using_mp_type_flag = args[0]
        return old_value
    else:
        return _clip_by_global_norm_using_mp_type_flag


def _cast_to_mp_type_if_enabled(x):
55 56 57 58
    if (
        x.dtype == core.VarDesc.VarType.FP16
        or x.dtype == core.VarDesc.VarType.BF16
    ) and _clip_by_global_norm_using_mp_type():
59 60 61 62
        return x.astype(core.VarDesc.VarType.FP32)
    else:
        return x

Y
Yu Yang 已提交
63

W
WangXi 已提交
64 65 66 67 68
def _squared_l2_norm(x):
    r"""
    This OP returns the squared L2 norm of a tensor.
    """

69
    x = _cast_to_mp_type_if_enabled(x)
70 71 72 73 74
    if (
        core.is_compiled_with_xpu()
        or x.dtype == core.VarDesc.VarType.FP16
        or x.dtype == core.VarDesc.VarType.BF16
    ):
W
WangXi 已提交
75 76 77 78
        square = layers.square(x)
        sum_square = layers.reduce_sum(square)
        return sum_square

79
    if in_dygraph_mode():
80
        return _C_ops.squared_l2_norm(x)
81 82
    elif _in_legacy_dygraph():
        return _legacy_C_ops.squared_l2_norm(x)
W
WangXi 已提交
83 84

    op_type = 'squared_l2_norm'
85
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], op_type)
W
WangXi 已提交
86 87 88 89 90 91 92 93 94
    helper = LayerHelper(op_type, **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": x}
    outputs = {'Out': out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out


95
class BaseErrorClipAttr:
F
fengjiayi 已提交
96 97 98
    def __str__(self):
        raise NotImplementedError()

Y
yuyang18 已提交
99
    def _append_clip_op(self, block, grad_name):
F
fengjiayi 已提交
100 101 102 103
        raise NotImplementedError()


class ErrorClipByValue(BaseErrorClipAttr):
104
    r"""
105 106
    Clips tensor values to the range [min, max].

107 108
    Given a tensor ``t`` (see Examples below), this operation clips its value \
    to ``min`` and ``max`` inplace.
109 110 111 112 113 114 115

    - Any values less than min are set to min.
    - Any values greater than max are set to max.

    Args:
        max (float): The maximum value to clip by.
        min (float, optional): The minimum value to clip by. if not set by user, \
116
        will be set to ``-max`` by framework.
117 118 119 120

    Examples:
        .. code-block:: python

121 122 123 124 125 126
            import paddle.fluid as fluid
            BATCH_SIZE = 128
            CLIP_MAX = 2e-6
            CLIP_MIN = -1e-6
            prog = fluid.framework.Program()
            with fluid.program_guard(main_program=prog):
C
Chengmo 已提交
127 128
                image = fluid.layers.data(
                    name='x', shape=[784], dtype='float32')
129 130
                hidden1 = fluid.layers.fc(input=image, size=128, act='relu')
                hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu')
C
Chengmo 已提交
131 132
                predict = fluid.layers.fc(
                    input=hidden2, size=10, act='softmax')
133 134 135 136 137 138 139
                label = fluid.layers.data(name='y', shape=[1], dtype='int64')
                cost = fluid.layers.cross_entropy(input=predict, label=label)
                avg_cost = fluid.layers.mean(cost)
            prog_clip = prog.clone()
            prog_clip.block(0).var(hidden1.name)._set_error_clip(
                fluid.clip.ErrorClipByValue(
                    max=CLIP_MAX, min=CLIP_MIN)
140 141
    """

F
fengjiayi 已提交
142 143 144 145 146 147 148 149 150
    def __init__(self, max, min=None):
        max = float(max)
        if min is None:
            min = -max
        else:
            min = float(min)
        self.max = max
        self.min = min

F
fengjiayi 已提交
151 152 153
    def __str__(self):
        return "ByValue, min=%f, max=%f" % (self.min, self.max)

Y
yuyang18 已提交
154
    def _append_clip_op(self, block, grad_name):
155 156 157 158
        clip_op_desc = block.desc.append_op()
        clip_op_desc.set_type("clip")
        clip_op_desc.set_input("X", [grad_name])
        clip_op_desc.set_output("Out", [grad_name])
W
Wu Yi 已提交
159 160
        clip_op_desc._set_attr("min", self.min)
        clip_op_desc._set_attr("max", self.max)
F
fengjiayi 已提交
161 162 163 164 165 166


def error_clip_callback(block, context):
    # the context is a grad_to_var map
    grad_to_var = context
    op_desc = block.desc.op(block.desc.op_size() - 1)
167
    for grad_n in [n for n in op_desc.output_arg_names() if n in grad_to_var]:
W
Wu Yi 已提交
168
        fwd_var = block._var_recursive(grad_to_var[grad_n])
F
fengjiayi 已提交
169
        error_clip = getattr(fwd_var, "error_clip", None)
170 171 172
        if not (
            error_clip is None or isinstance(error_clip, BaseErrorClipAttr)
        ):
F
fengjiayi 已提交
173 174 175
            raise TypeError(
                "Variable's error_clip should be an instance of BaseErrorClipAttr or None."
            )
F
fengjiayi 已提交
176
        if error_clip is not None:
Y
yuyang18 已提交
177
            error_clip._append_clip_op(block, grad_n)
F
fengjiayi 已提交
178 179


180
class ClipGradBase:
181
    def __init__(self):
182
        super().__init__()
183

F
fengjiayi 已提交
184 185 186
    def __str__(self):
        raise NotImplementedError()

187
    @imperative_base.no_grad
188 189
    def _dygraph_clip(self, params_grads):
        raise NotImplementedError
Y
Yu Yang 已提交
190

191 192
    def _static_clip(self, params_grads):
        raise NotImplementedError
Y
Yu Yang 已提交
193

194
    def __call__(self, params_grads):
J
Jiabin Yang 已提交
195
        if framework._non_static_mode():
196 197 198 199 200 201
            return self._dygraph_clip(params_grads)
        else:
            for p, g in params_grads:
                if getattr(p, 'gradient_clip_attr', None) is not None:
                    warnings.warn(
                        "'set_gradient_clip' will be ineffective, because you have "
202
                        "set 'need_clip' in 'ParamAttr'. So, 'set_gradient_clip' "
203 204
                        "is redundant and you can remove it."
                    )
205 206
                    break
            return self._static_clip(params_grads)
F
fengjiayi 已提交
207

Y
yuyang18 已提交
208
    def _process_context(self, context, param, grad):
209
        raise NotImplementedError()
Y
Yu Yang 已提交
210

Y
yuyang18 已提交
211
    def _create_operators(self, param, grad):
212
        raise NotImplementedError()
Y
Yu Yang 已提交
213 214


215
class ClipGradByValue(ClipGradBase):
216
    """
217
    Limit the value of multi-dimensional Tensor :math:`X` to the range [min, max].
218

219
    - Any values less than min are set to ``min``.
220

221
    - Any values greater than max are set to ``max``.
222

223
    The multi-dimensional Tensor :math:`X` is not passed from this class, but the gradients of all parameters set in ``optimizer``.
224
    If ``need_clip`` of specific param is ``False`` in its ``ParamAttr``, then the gradients of this param will not be clipped.
225 226

    Gradient clip will takes effect after being set in ``optimizer`` , see the document ``optimizer``
227
    (for example: :ref:`api_paddle_optimizer_SGD`).
228 229

    Note:
230
        ``need_clip`` of ``ClipGradByValue`` HAS BEEN DEPRECATED since 2.0.
231
        Please use ``need_clip`` in ``ParamAttr`` to speficiy the clip scope.
232

233 234
    Args:
        max (float): The maximum value to clip by.
235
        min (float, optional): The minimum value to clip by. if not set by user, it will be set to ``-max``
236
            automatically. In this case, ``max`` must be greater than 0.
237 238 239

    Examples:
        .. code-block:: python
240

241
            import paddle
242

243
            x = paddle.uniform([10, 10], min=-1.0, max=1.0, dtype='float32')
244 245
            linear = paddle.nn.Linear(in_features=10, out_features=10,
                                      weight_attr=paddle.ParamAttr(need_clip=True),
246
                                      bias_attr=paddle.ParamAttr(need_clip=False))
247 248 249 250
            out = linear(x)
            loss = paddle.mean(out)
            loss.backward()

251
            clip = paddle.nn.ClipGradByValue(min=-1, max=1)
252 253
            sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), grad_clip=clip)
            sdg.step()
254 255
    """

256
    def __init__(self, max, min=None):
257
        super().__init__()
Y
Yu Yang 已提交
258
        if min is None:
259
            assert max > 0.0
Y
Yu Yang 已提交
260
            min = -max
261 262
        self.max = float(max)
        self.min = float(min)
Y
Yu Yang 已提交
263

F
fengjiayi 已提交
264
    def __str__(self):
265
        return "Clip Gradient By Value, min = %f, max=%f" % (self.min, self.max)
266

267
    @imperative_base.no_grad
268 269 270 271 272
    def _dygraph_clip(self, params_grads):
        params_and_grads = []
        for p, g in params_grads:
            if g is None:
                continue
273
            if getattr(p, 'need_clip', True) is False:
274 275
                params_and_grads.append((p, g))
                continue
H
hong 已提交
276
            new_grad = paddle.clip(x=g, min=self.min, max=self.max)
277 278 279 280 281
            params_and_grads.append((p, new_grad))
        return params_and_grads

    def _static_clip(self, params_grads):
        params_and_grads = []
282
        param_new_grad_name_dict = dict()
283 284 285 286
        with framework.name_scope('gradient_clip'):
            for p, g in params_grads:
                if g is None:
                    continue
287
                if getattr(p, 'need_clip', True) is False:
288 289 290 291 292 293
                    params_and_grads.append((p, g))
                    continue

                with p.block.program._optimized_guard([p, g]):
                    new_grad = layers.clip(x=g, min=self.min, max=self.max)
                params_and_grads.append((p, new_grad))
294 295
                param_new_grad_name_dict[p.name] = new_grad.name
        _correct_clip_op_role_var(params_and_grads, param_new_grad_name_dict)
296
        return params_and_grads
F
fengjiayi 已提交
297

Y
yuyang18 已提交
298
    def _process_context(self, context, param, grad):
Y
Yu Yang 已提交
299 300
        pass

Y
yuyang18 已提交
301
    def _create_operators(self, param, grad):
Y
Yu Yang 已提交
302 303 304 305
        new_grad = layers.clip(x=grad, min=self.min, max=self.max)
        return param, new_grad


306
class ClipGradByNorm(ClipGradBase):
307
    r"""
308
    Limit the l2 norm of multi-dimensional Tensor :math:`X` to ``clip_norm`` .
309

310
    - If the l2 norm of :math:`X` is greater than ``clip_norm`` , :math:`X` will be compressed by a ratio.
311

312
    - If the l2 norm of :math:`X` is less than or equal to ``clip_norm`` , nothing will be done.
313

314 315
    The multidimensional Tensor :math:`X` is not passed from this class, but the gradients of all parameters set in ``optimizer``.
    If ``need_clip`` of specific param is ``False`` in its ``ParamAttr``, then the gradients of this param will not be clipped.
316 317

    Gradient clip will takes effect after being set in ``optimizer`` , see the document ``optimizer``
318
    (for example: :ref:`api_paddle_optimizer_SGD`).
319

320
    The clipping formula is:
321 322

    .. math::
323
        Out =
324 325 326 327 328 329
        \left\{
            \begin{array}{ccl}
                X & & if (norm(X) \leq clip\_norm) \\
                \frac{clip\_norm*X}{norm(X)} & & if (norm(X) > clip\_norm) \\
        \end{array}
        \right.
330 331 332 333


    where :math:`norm(X)` represents the L2 norm of :math:`X`.

334
    .. math::
335
        norm(X) = ( \sum_{i=1}^{n}|x\_i|^2)^{ \frac{1}{2}}
336

337
    Note:
338
        ``need_clip`` of ``ClipGradByNorm`` HAS BEEN DEPRECATED since 2.0.
339 340
        Please use ``need_clip`` in ``ParamAttr`` to speficiy the clip scope.

341
    Args:
342
        clip_norm(float): The maximum norm value.
C
Chengmo 已提交
343

344 345
    Examples:
        .. code-block:: python
346

347
            import paddle
348

349
            x = paddle.uniform([10, 10], min=-1.0, max=1.0, dtype='float32')
350 351
            linear = paddle.nn.Linear(in_features=10, out_features=10,
                                      weight_attr=paddle.ParamAttr(need_clip=True),
352
                                      bias_attr=paddle.ParamAttr(need_clip=False))
353 354 355 356
            out = linear(x)
            loss = paddle.mean(out)
            loss.backward()

357
            clip = paddle.nn.ClipGradByNorm(clip_norm=1.0)
358 359
            sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), grad_clip=clip)
            sdg.step()
360 361
    """

362
    def __init__(self, clip_norm):
363
        super().__init__()
364
        self.clip_norm = float(clip_norm)
F
fengjiayi 已提交
365

F
fengjiayi 已提交
366
    def __str__(self):
367 368
        return "Gradient Clip By Norm, clip_norm=%f" % self.clip_norm

369
    @imperative_base.no_grad
370 371 372 373 374
    def _dygraph_clip(self, params_grads):
        params_and_grads = []
        for p, g in params_grads:
            if g is None:
                continue
375
            if getattr(p, 'need_clip', True) is False:
376 377 378 379 380 381 382 383 384
                params_and_grads.append((p, g))
                continue
            new_grad = layers.clip_by_norm(x=g, max_norm=self.clip_norm)
            params_and_grads.append((p, new_grad))
        return params_and_grads

    def _static_clip(self, params_grads):
        params_and_grads = []
        with framework.name_scope('gradient_clip'):
385
            param_new_grad_name_dict = dict()
386 387 388
            for p, g in params_grads:
                if g is None:
                    continue
389
                if getattr(p, 'need_clip', True) is False:
390 391 392 393 394
                    params_and_grads.append((p, g))
                    continue

                with p.block.program._optimized_guard([p, g]):
                    new_grad = layers.clip_by_norm(x=g, max_norm=self.clip_norm)
395
                param_new_grad_name_dict[p.name] = new_grad.name
396
                params_and_grads.append((p, new_grad))
397
        _correct_clip_op_role_var(params_and_grads, param_new_grad_name_dict)
398
        return params_and_grads
F
fengjiayi 已提交
399

Y
yuyang18 已提交
400
    def _process_context(self, context, param, grad):
F
fengjiayi 已提交
401 402
        pass

Y
yuyang18 已提交
403
    def _create_operators(self, param, grad):
F
fengjiayi 已提交
404 405 406 407
        new_grad = layers.clip_by_norm(x=grad, max_norm=self.clip_norm)
        return param, new_grad


408 409 410 411 412 413 414 415 416 417 418 419 420 421
_allow_pure_fp16_global_norm_clip_flag = False


def _allow_pure_fp16_global_norm_clip(*args):
    global _allow_pure_fp16_global_norm_clip_flag
    if len(args) == 0:
        return _allow_pure_fp16_global_norm_clip_flag
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        old_value = _allow_pure_fp16_global_norm_clip_flag
        _allow_pure_fp16_global_norm_clip_flag = args[0]
        return old_value


422
class ClipGradByGlobalNorm(ClipGradBase):
423
    r"""
424
    Given a list of Tensor :math:`t\_list` , calculate the global norm for the elements of all tensors in
425
    :math:`t\_list` , and limit it to ``clip_norm`` .
426

427
    - If the global norm is greater than ``clip_norm`` , all elements of :math:`t\_list` will be compressed by a ratio.
428

429
    - If the global norm is less than or equal to ``clip_norm`` , nothing will be done.
430

431 432
    The list of Tensor :math:`t\_list` is not passed from this class, but the gradients of all parameters set in ``optimizer``.
    If ``need_clip`` of specific param is ``False`` in its ``ParamAttr``, then the gradients of this param will not be clipped.
433 434

    Gradient clip will takes effect after being set in ``optimizer`` , see the document ``optimizer``
435
    (for example: :ref:`api_paddle_optimizer_SGD`).
436 437

    The clipping formula is:
438 439 440

    .. math::

441
        t\_list[i] = t\_list[i] * \frac{clip\_norm}{\max(global\_norm, clip\_norm)}
442 443 444 445 446 447 448

    where:

    .. math::

        global\_norm = \sqrt{\sum_{i=0}^{N-1}(l2norm(t\_list[i]))^2}

449
    Note:
450
        ``need_clip`` of ``ClipGradyGlobalNorm`` HAS BEEN DEPRECATED since 2.0.
451 452
        Please use ``need_clip`` in ``ParamAttr`` to speficiy the clip scope.

453
    Args:
454
        clip_norm (float): The maximum norm value.
455
        group_name (str, optional): The group name for this clip. Default value is ``default_group``.
456 457 458

    Examples:
        .. code-block:: python
459

460 461
            import paddle

462
            x = paddle.uniform([10, 10], min=-1.0, max=1.0, dtype='float32')
463 464
            linear = paddle.nn.Linear(in_features=10, out_features=10,
                                      weight_attr=paddle.ParamAttr(need_clip=True),
465
                                      bias_attr=paddle.ParamAttr(need_clip=False))
466 467 468 469
            out = linear(x)
            loss = paddle.mean(out)
            loss.backward()

470
            clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0)
471 472
            sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), grad_clip=clip)
            sdg.step()
473 474
    """

475 476 477
    def __init__(
        self, clip_norm, group_name="default_group", auto_skip_clip=False
    ):
478
        super().__init__()
479
        self.clip_norm = float(clip_norm)
F
update  
fengjiayi 已提交
480
        self.group_name = group_name
481 482
        assert isinstance(auto_skip_clip, bool)
        self.auto_skip_clip = auto_skip_clip
483

F
fengjiayi 已提交
484
    def __str__(self):
485 486
        return "Gradient Clip By GlobalNorm, global_norm=%f" % (self.clip_norm)

487
    @imperative_base.no_grad
488 489 490
    def _dygraph_clip(self, params_grads):
        params_and_grads = []
        sum_square_list = []
491 492
        sum_square_list_fp16 = []
        sum_square_list_fp32 = []
493 494 495
        for p, g in params_grads:
            if g is None:
                continue
496
            if getattr(p, 'need_clip', True) is False:
497 498
                continue
            merge_grad = g
499 500 501 502 503 504

            if in_dygraph_mode() and g.is_selected_rows():
                merge_grad = layers.merge_selected_rows(g)
                merge_grad = merge_grad._get_tensor_from_selected_rows()

            elif g.type == core.VarDesc.VarType.SELECTED_ROWS:
505 506
                merge_grad = layers.merge_selected_rows(g)
                merge_grad = layers.get_tensor_from_selected_rows(merge_grad)
W
WangXi 已提交
507 508

            sum_square = _squared_l2_norm(merge_grad)
509 510 511 512
            if (
                sum_square.dtype == core.VarDesc.VarType.FP16
                or sum_square.dtype == core.VarDesc.VarType.BF16
            ):
513 514 515 516 517
                sum_square_list_fp16.append(sum_square)
            elif sum_square.dtype == core.VarDesc.VarType.FP32:
                sum_square_list_fp32.append(sum_square)
            else:
                sum_square_list.append(sum_square)
518 519

        # all parameters have been filterd out
520 521 522 523 524 525
        if (
            len(sum_square_list)
            + len(sum_square_list_fp16)
            + len(sum_square_list_fp32)
            == 0
        ):
526 527
            return params_grads

528 529 530
        sum_dtype = 'float64' if len(sum_square_list) > 0 else "float32"
        global_norm_var = []
        if len(sum_square_list_fp16) > 0:
Z
zhangbo9674 已提交
531
            global_norm_var_fp16 = paddle.add_n(sum_square_list_fp16)
532 533
            global_norm_var.append(global_norm_var_fp16.astype(sum_dtype))
        if len(sum_square_list_fp32) > 0:
Z
zhangbo9674 已提交
534
            global_norm_var_fp32 = paddle.add_n(sum_square_list_fp32)
535 536 537 538 539
            if sum_dtype == 'float32':
                global_norm_var.append(global_norm_var_fp32)
            else:
                global_norm_var.append(global_norm_var_fp32.astype(sum_dtype))
        if len(sum_square_list) > 0:
Z
zhangbo9674 已提交
540
            global_norm_var_fp64 = paddle.add_n(sum_square_list)
541
            global_norm_var.append(global_norm_var_fp64)
Z
zhangbo9674 已提交
542
        global_norm_var = paddle.add_n(global_norm_var)
543
        global_norm_var = layers.sqrt(global_norm_var)
544 545 546
        max_global_norm = layers.fill_constant(
            shape=[1], dtype=global_norm_var.dtype, value=self.clip_norm
        )
Z
zhangbo9674 已提交
547 548

        need_clip = False
549 550
        if not self.auto_skip_clip:  # always apply clip
            need_clip = True
551 552
            clip_var = layers.elementwise_div(
                x=max_global_norm,
H
HongyuJia 已提交
553
                y=paddle.maximum(x=global_norm_var, y=max_global_norm),
554
            )
555 556
        elif global_norm_var > max_global_norm:
            # only when global_norm_var > max_global_norm, grad need clip
Z
zhangbo9674 已提交
557
            need_clip = True
558 559 560
            clip_var = layers.elementwise_div(
                x=max_global_norm, y=global_norm_var
            )
561

562 563 564
        for p, g in params_grads:
            if g is None:
                continue
565
            if getattr(p, 'need_clip', True) is False:
566 567
                params_and_grads.append((p, g))
                continue
W
WangXi 已提交
568
            # TODO(wangxi): use inplace elementwise_mul
Z
zhangbo9674 已提交
569
            if need_clip:
570 571 572 573 574
                clip_input = (
                    clip_var.astype(g.dtype)
                    if clip_var.dtype != g.dtype
                    else clip_var
                )
575
                new_grad = layers.elementwise_mul(g, clip_input)
Z
zhangbo9674 已提交
576 577 578
                params_and_grads.append((p, new_grad))
            else:
                params_and_grads.append((p, g))
579 580 581 582 583 584

        return params_and_grads

    def _static_clip(self, params_grads):
        params_and_grads = []
        sum_square_list = []
585 586
        sum_square_list_fp16 = []
        sum_square_list_fp32 = []
587 588 589 590
        with framework.name_scope('gradient_clip'):
            for p, g in params_grads:
                if g is None:
                    continue
591
                if getattr(p, 'need_clip', True) is False:
592 593 594 595 596 597
                    continue
                merge_grad = g
                with p.block.program._optimized_guard([p, g]):
                    if g.type == core.VarDesc.VarType.SELECTED_ROWS:
                        merge_grad = layers.merge_selected_rows(g)
                        merge_grad = layers.get_tensor_from_selected_rows(
598 599
                            merge_grad
                        )
W
WangXi 已提交
600
                    sum_square = _squared_l2_norm(merge_grad)
601 602 603 604 605 606
                    if sum_square.dtype == core.VarDesc.VarType.FP16:
                        sum_square_list_fp16.append(sum_square)
                    elif sum_square.dtype == core.VarDesc.VarType.FP32:
                        sum_square_list_fp32.append(sum_square)
                    else:
                        sum_square_list.append(sum_square)
607 608

            # all parameters have been filterd out
609 610 611 612 613 614
            if (
                len(sum_square_list)
                + len(sum_square_list_fp16)
                + len(sum_square_list_fp32)
                == 0
            ):
615 616 617
                return params_grads

            with p.block.program._optimized_guard([p, g]):
618 619 620 621 622
                sum_dtype = 'float64' if len(sum_square_list) > 0 else "float32"

                global_norm_var = []
                if len(sum_square_list_fp16) > 0:
                    global_norm_var_fp16 = layers.sums(sum_square_list_fp16)
623 624 625 626
                    if (
                        sum_square_list_fp32
                        or sum_square_list
                        or not _allow_pure_fp16_global_norm_clip()
627 628
                    ):
                        global_norm_var.append(
629 630
                            global_norm_var_fp16.astype(sum_dtype)
                        )
631 632
                    else:
                        global_norm_var.append(global_norm_var_fp16)
633 634 635 636 637 638
                if len(sum_square_list_fp32) > 0:
                    global_norm_var_fp32 = layers.sums(sum_square_list_fp32)
                    if sum_dtype == 'float32':
                        global_norm_var.append(global_norm_var_fp32)
                    else:
                        global_norm_var.append(
639 640
                            global_norm_var_fp32.astype(sum_dtype)
                        )
641 642 643 644
                if len(sum_square_list) > 0:
                    # fp64
                    global_norm_var_other_dtype = layers.sums(sum_square_list)
                    global_norm_var.append(global_norm_var_other_dtype)
645

646 647 648 649 650
                global_norm_var = (
                    layers.sums(global_norm_var)
                    if len(global_norm_var) > 1
                    else global_norm_var[0]
                )
651 652
                global_norm_var = layers.sqrt(x=global_norm_var)
                max_global_norm = layers.fill_constant(
653 654 655 656
                    shape=[1], dtype=global_norm_var.dtype, value=self.clip_norm
                )
                scale_var = layers.elementwise_div(
                    x=max_global_norm,
H
HongyuJia 已提交
657
                    y=paddle.maximum(x=max_global_norm, y=global_norm_var),
658
                )
659
            param_new_grad_name_dict = dict()
660 661 662
            for p, g in params_grads:
                if g is None:
                    continue
663
                if getattr(p, 'need_clip', True) is False:
664 665 666 667
                    params_and_grads.append((p, g))
                    continue

                with p.block.program._optimized_guard([p, g]):
668
                    new_g = _cast_to_mp_type_if_enabled(g)
W
WangXi 已提交
669
                    # inplace
670 671 672 673 674 675
                    scale_input = (
                        scale_var.astype('float16')
                        if new_g.dtype == core.VarDesc.VarType.FP16
                        and scale_var.dtype != core.VarDesc.VarType.FP16
                        else scale_var
                    )
676 677 678 679 680
                    # NOTE(Yuang Liu): For pure dp with gradient merge, the p and g
                    # will be in different blocks with the gradient clip related ops.
                    # We need to handle the correct block, otherwise will encounter
                    # a 'NotFoundError' during compile time.
                    block = default_main_program().current_block()
681 682 683 684 685
                    block.append_op(
                        type='elementwise_mul',
                        inputs={'X': new_g, 'Y': scale_input},
                        outputs={'Out': new_g},
                    )
686
                    if new_g is not g:
687 688 689 690 691 692 693 694 695
                        block.append_op(
                            type='cast',
                            inputs={'X': new_g},
                            outputs={'Out': g},
                            attrs={
                                'in_dtype': new_g.dtype,
                                'out_dtype': g.dtype,
                            },
                        )
696

W
WangXi 已提交
697 698
                param_new_grad_name_dict[p.name] = g.name
                params_and_grads.append((p, g))
699

700
        _correct_clip_op_role_var(params_and_grads, param_new_grad_name_dict)
701
        return params_and_grads
F
fengjiayi 已提交
702

Y
yuyang18 已提交
703
    def _process_context(self, context, param, grad):
F
update  
fengjiayi 已提交
704 705 706 707
        if self.group_name not in context:
            context[self.group_name] = []
            context[self.group_name + "_clip_value"] = self.clip_norm
            context[self.group_name + "_clip"] = layers.fill_constant(
708 709
                shape=[1], dtype=grad.dtype, value=self.clip_norm
            )
F
update  
fengjiayi 已提交
710 711 712 713 714
        else:
            if not self.clip_norm == context[self.group_name + "_clip_value"]:
                raise ValueError(
                    "All parameters' 'clip_norm' of a same group should be the same"
                )
F
fengjiayi 已提交
715

C
chengduo 已提交
716 717 718 719 720
        merge_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            merge_grad = layers.merge_selected_rows(grad)
            merge_grad = layers.get_tensor_from_selected_rows(merge_grad)

W
WangXi 已提交
721
        local_norm_var = _squared_l2_norm(merge_grad)
F
update  
fengjiayi 已提交
722
        context[self.group_name].append(local_norm_var)
F
fengjiayi 已提交
723

F
update  
fengjiayi 已提交
724
        self.context = context
725

Y
yuyang18 已提交
726
    def _create_operators(self, param, grad):
F
update  
fengjiayi 已提交
727 728 729
        group_scale_name = self.group_name + "_scale"
        if group_scale_name not in self.context:
            group_norm_var = layers.sums(input=self.context[self.group_name])
T
tensor-tang 已提交
730
            group_norm_var = layers.sqrt(x=group_norm_var)
F
update  
fengjiayi 已提交
731
            clip_var = self.context[self.group_name + "_clip"]
732 733
            group_scale_var = layers.elementwise_div(
                x=clip_var,
H
HongyuJia 已提交
734
                y=paddle.maximum(x=clip_var, y=group_norm_var),
735 736
            )
            assert group_scale_var.shape == (1,)
F
update  
fengjiayi 已提交
737
            self.context[group_scale_name] = group_scale_var
F
fengjiayi 已提交
738

W
WangXi 已提交
739
        # inplace
740 741 742 743 744
        param.block.append_op(
            type='elementwise_mul',
            inputs={'X': grad, 'Y': self.context[group_scale_name]},
            outputs={'Out': grad},
        )
C
chengduo 已提交
745

W
WangXi 已提交
746
        return param, grad
F
fengjiayi 已提交
747 748


749
@framework.dygraph_not_support
F
fengjiayi 已提交
750
def set_gradient_clip(clip, param_list=None, program=None):
F
fengjiayi 已提交
751
    """
752
    :api_attr: Static Graph
753

754
    Warning:
755 756 757

        This API must be used after building network, and before ``minimize`` ,
        and it may be removed in future releases, so it is not recommended.
758 759
        It is recommended to set ``grad_clip`` when initializing the ``optimizer`` ,
        this is a better method to clip gradient. There are three clipping strategies:
760
         :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
761
         :ref:`api_fluid_clip_GradientClipByValue` .
762

763 764 765
    To specify parameters that require gradient clip.

    Args:
766 767 768 769
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
            :ref:`api_fluid_clip_GradientClipByValue` ). Default value: None, and there is no
770
            gradient clipping.
Z
Zeng Jinle 已提交
771
        param_list (list(Variable), optional): Parameters that require gradient clip.
772
                It can be a list of parameter or a list of parameter's name.
773
                Default None, meaning that all parameters in the program will be included.
Z
Zeng Jinle 已提交
774
        program (Program, optional): The program where parameters are located.
775 776 777 778 779 780 781
                Default None, meaning that using :ref:`api_fluid_default_main_program` .

    Returns:
        None

    Examples:
        .. code-block:: python
C
Chengmo 已提交
782

783 784 785
            import paddle.fluid as fluid

            def network():
C
Chengmo 已提交
786 787
                image = fluid.data(name='image', shape=[
                                   None, 28], dtype='float32')
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
                param_attr1 = fluid.ParamAttr("fc1_param")
                fc1 = fluid.layers.fc(image, size=10, param_attr=param_attr1)
                param_attr2 = fluid.ParamAttr("fc2_param")
                fc2 = fluid.layers.fc(fc1, size=10, param_attr=param_attr2)
                loss = fluid.layers.reduce_mean(fc2)
                return loss


            # network 1: clip all parameter gradient
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByGlobalNorm(clip_norm=2.0))
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)

            # network 2: clip parameter gradient by name
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByValue(min=-1.0, max=1.0),
                    param_list=["fc1_param", "fc2_param"])
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)

813
            # network 3: clip parameter gradient by value
814 815 816 817 818 819 820 821 822
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                param_var1 = fluid.default_main_program().global_block().var("fc1_param")
                param_var2 = fluid.default_main_program().global_block().var("fc2_param")
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByValue(min=-1.0, max=1.0),
                    param_list=[param_var1, param_var2])
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)
823

824
            # network 4: use 'set_gradient_clip' and 'optimize(grad_clip=clip)' together
825 826 827 828 829 830 831
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                clip1 = fluid.clip.GradientClipByValue(min=-1.0, max=1.0)
                clip2 = fluid.clip.GradientClipByNorm(clip_norm=1.0)
                # Set the gradient clipping strategy: clip1
                fluid.clip.set_gradient_clip(clip1)
                # Set the gradient clipping strategy: clip2
832 833
                sgd = fluid.optimizer.SGD(learning_rate=1e-3, grad_clip=clip2)
                sgd.minimize(loss)
834
                # 'set_gradient_clip' will not take effect when setting has a conflict,
835
                # and the gradient clipping strategy will be 'clip2'
836 837


F
fengjiayi 已提交
838
    """
839 840 841 842 843 844 845 846
    warnings.warn(
        "Caution! 'set_gradient_clip' is not recommended "
        "and may be deprecated in future! "
        "We recommend a new strategy: set 'grad_clip' "
        "when initializing the 'optimizer'. "
        "This method can reduce the mistakes, please "
        "refer to documention of 'optimizer'."
    )
847

848
    if not isinstance(clip, ClipGradBase):
F
fengjiayi 已提交
849
        raise TypeError(
850 851
            "'clip' should be an instance of ClipGradBase's derived class"
        )
F
fengjiayi 已提交
852 853
    if program is None:
        program = framework.default_main_program()
854 855 856

    for op in program.block(0).ops:
        if 'op_namescope' in op.all_attrs() and "optimizer" in op.attr(
857 858
            "op_namescope"
        ):
859 860 861 862 863 864
            warnings.warn(
                "'minimize' has been invoked before, this will make 'set_gradient_clip' "
                "be ineffective! Please invoke 'set_gradient_clip' before 'minimize'."
            )
            break

F
fengjiayi 已提交
865 866
    if param_list is None:
        param_list = program.block(0).all_parameters()
867
    if all(isinstance(elem, str) for elem in param_list):
F
fengjiayi 已提交
868 869 870 871 872 873 874
        param_list = [program.block(0).var(elem) for elem in param_list]
    if not all(isinstance(elem, framework.Parameter) for elem in param_list):
        raise TypeError(
            "'param_list' should be a list of Parameter or basestring(parameter's name)."
        )

    for param in param_list:
F
fengjiayi 已提交
875
        param.gradient_clip_attr = copy.deepcopy(clip)
F
fengjiayi 已提交
876 877


878
def append_gradient_clip_ops(param_grads):
Y
Yu Yang 已提交
879
    context = dict()
880 881 882
    for p, g in param_grads:
        if g is None:
            continue
883 884 885
        with p.block.program._optimized_guard([p, g]), framework.name_scope(
            'gradient_clip'
        ):
886
            clip_attr = getattr(p, 'gradient_clip_attr', None)
Y
yuyang18 已提交
887
            if clip_attr is None:
888
                return param_grads
889
            if not isinstance(clip_attr, ClipGradBase):
Y
yuyang18 已提交
890
                raise TypeError(
891 892
                    "clip attribute should be an instance of GradientClipBase"
                )
Y
Yu Yang 已提交
893

Y
yuyang18 已提交
894
            clip_attr._process_context(context=context, param=p, grad=g)
Y
yuyang18 已提交
895 896

    res = []
897
    param_new_grad_name_dict = dict()
898 899 900
    for p, g in param_grads:
        if g is None:
            continue
901 902 903
        with p.block.program._optimized_guard([p, g]), framework.name_scope(
            'gradient_clip'
        ):
904
            param, new_grad = clip_attr._create_operators(param=p, grad=g)
905
            param_new_grad_name_dict[param.name] = new_grad.name
906
            res.append([param, new_grad])
Y
Yu Yang 已提交
907

908
    _correct_clip_op_role_var(res, param_new_grad_name_dict)
909 910 911 912
    return res


# change wrong mapping relation between param & grad in clip op
913
# Note: This function is sensitive to the time cost of the network with gradient clipping
914
# and should not be changed easily. If you must change, please test the time cost.
915 916 917 918
def _correct_clip_op_role_var(params_grads, param_new_grad_name_dict):
    block_id_list = []
    if len(param_new_grad_name_dict) == 0:
        return
919 920
    for param, grad in params_grads:
        if grad is None:
921
            continue
922 923 924 925
        block_id = param.block.idx
        if block_id in block_id_list:
            continue
        block_id_list.append(block_id)
926
        for op in param.block.program.global_block().ops:
927 928 929 930 931
            if (
                op.has_attr("op_namescope")
                and "gradient_clip" in op.attr("op_namescope")
                and op.attr('op_role_var')
            ):
932 933 934
                param_name = op.attr('op_role_var')[0]
                if param_name in param_new_grad_name_dict:
                    correct_p_g = [
935 936
                        param_name,
                        param_new_grad_name_dict[param_name],
937
                    ]
C
Chengmo 已提交
938
                    op._set_attr('op_role_var', correct_p_g)
Y
Yu Yang 已提交
939 940


941 942 943 944
GradientClipBase = ClipGradBase
GradientClipByValue = ClipGradByValue
GradientClipByNorm = ClipGradByNorm
GradientClipByGlobalNorm = ClipGradByGlobalNorm