clip.py 19.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
F
fengjiayi 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
F
fengjiayi 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
update  
fengjiayi 已提交
14

15 16
from __future__ import print_function

F
fengjiayi 已提交
17
import copy
18
import six
F
fengjiayi 已提交
19

Y
Yu Yang 已提交
20
import functools
21 22
from . import layers
from . import framework
F
fengjiayi 已提交
23
from . import core
Y
Yu Yang 已提交
24

F
fengjiayi 已提交
25
__all__ = [
26
    'set_gradient_clip',
27
    'ErrorClipByValue',
F
fengjiayi 已提交
28 29 30
    'GradientClipByValue',
    'GradientClipByNorm',
    'GradientClipByGlobalNorm',
F
fengjiayi 已提交
31
]
Y
Yu Yang 已提交
32 33


F
fengjiayi 已提交
34
class BaseErrorClipAttr(object):
F
fengjiayi 已提交
35 36 37
    def __str__(self):
        raise NotImplementedError()

Y
yuyang18 已提交
38
    def _append_clip_op(self, block, grad_name):
F
fengjiayi 已提交
39 40 41 42
        raise NotImplementedError()


class ErrorClipByValue(BaseErrorClipAttr):
43 44 45
    """
    Clips tensor values to the range [min, max].

46 47
    Given a tensor ``t`` (see Examples below), this operation clips its value \
    to ``min`` and ``max`` inplace.
48 49 50 51 52 53 54

    - Any values less than min are set to min.
    - Any values greater than max are set to max.

    Args:
        max (float): The maximum value to clip by.
        min (float, optional): The minimum value to clip by. if not set by user, \
55
        will be set to ``-max`` by framework.
56 57 58 59

    Examples:
        .. code-block:: python

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
            import paddle.fluid as fluid
            BATCH_SIZE = 128
            CLIP_MAX = 2e-6
            CLIP_MIN = -1e-6
            prog = fluid.framework.Program()
            with fluid.program_guard(main_program=prog):
                image = fluid.layers.data(name='x', shape=[784], dtype='float32')
                hidden1 = fluid.layers.fc(input=image, size=128, act='relu')
                hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu')
                predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')
                label = fluid.layers.data(name='y', shape=[1], dtype='int64')
                cost = fluid.layers.cross_entropy(input=predict, label=label)
                avg_cost = fluid.layers.mean(cost)
            prog_clip = prog.clone()
            prog_clip.block(0).var(hidden1.name)._set_error_clip(
                fluid.clip.ErrorClipByValue(
                    max=CLIP_MAX, min=CLIP_MIN)
77 78
    """

F
fengjiayi 已提交
79 80 81 82 83 84 85 86 87
    def __init__(self, max, min=None):
        max = float(max)
        if min is None:
            min = -max
        else:
            min = float(min)
        self.max = max
        self.min = min

F
fengjiayi 已提交
88 89 90
    def __str__(self):
        return "ByValue, min=%f, max=%f" % (self.min, self.max)

Y
yuyang18 已提交
91
    def _append_clip_op(self, block, grad_name):
92 93 94 95
        clip_op_desc = block.desc.append_op()
        clip_op_desc.set_type("clip")
        clip_op_desc.set_input("X", [grad_name])
        clip_op_desc.set_output("Out", [grad_name])
W
Wu Yi 已提交
96 97
        clip_op_desc._set_attr("min", self.min)
        clip_op_desc._set_attr("max", self.max)
F
fengjiayi 已提交
98 99 100 101 102 103


def error_clip_callback(block, context):
    # the context is a grad_to_var map
    grad_to_var = context
    op_desc = block.desc.op(block.desc.op_size() - 1)
104
    for grad_n in [n for n in op_desc.output_arg_names() if n in grad_to_var]:
W
Wu Yi 已提交
105
        fwd_var = block._var_recursive(grad_to_var[grad_n])
F
fengjiayi 已提交
106
        error_clip = getattr(fwd_var, "error_clip", None)
F
fengjiayi 已提交
107 108 109 110 111
        if not (error_clip is None or isinstance(error_clip,
                                                 BaseErrorClipAttr)):
            raise TypeError(
                "Variable's error_clip should be an instance of BaseErrorClipAttr or None."
            )
F
fengjiayi 已提交
112
        if error_clip is not None:
Y
yuyang18 已提交
113
            error_clip._append_clip_op(block, grad_n)
F
fengjiayi 已提交
114 115


Y
Yu Yang 已提交
116
class BaseGradientClipAttr(object):
F
fengjiayi 已提交
117 118 119
    def __str__(self):
        raise NotImplementedError()

Y
yuyang18 已提交
120
    def _process_context(self, context, param, grad):
Y
Yu Yang 已提交
121 122
        raise NotImplementedError()

Y
yuyang18 已提交
123
    def _create_operators(self, param, grad):
Y
Yu Yang 已提交
124 125 126 127
        raise NotImplementedError()


class NullGradientClipAttr(BaseGradientClipAttr):
F
fengjiayi 已提交
128 129 130
    def __str__(self):
        return "Null"

Y
yuyang18 已提交
131
    def _process_context(self, context, param, grad):
Y
Yu Yang 已提交
132 133
        pass

Y
yuyang18 已提交
134
    def _create_operators(self, param, grad):
Y
Yu Yang 已提交
135 136 137 138
        return param, grad


class GradientClipByValue(BaseGradientClipAttr):
139 140 141
    """
    Clips gradient values to the range [min, max].

142
    Given a tensor ``t``, this operation clips its value to ``min`` and ``max`` inplace.
143

144 145
    - Any values less than min are set to ``min``.
    - Any values greater than max are set to ``max``.
146 147 148 149 150 151 152 153 154

    Args:
        max (float): The maximum value to clip by.
        min (float, optional): The minimum value to clip by. if not set by user, \
        will be set to -max by framework.

    Examples:
        .. code-block:: python

155
            import paddle.fluid as fluid
T
Tink_Y 已提交
156 157
            w_param_attrs = fluid.ParamAttr(name=None,
              initializer=fluid.initializer.UniformInitializer(low=-1.0, high=1.0, seed=0),
158
              learning_rate=1.0,
T
Tink_Y 已提交
159
              regularizer=fluid.regularizer.L1Decay(1.0),
160
              trainable=True,
161 162
              gradient_clip=fluid.clip.GradientClipByValue(-1.0, 1.0))
            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
163 164 165
            y_predict = fluid.layers.fc(input=x, size=1, param_attr=w_param_attrs)
    """

Y
Yu Yang 已提交
166 167 168 169 170 171 172 173 174
    def __init__(self, max, min=None):
        max = float(max)
        if min is None:
            min = -max
        else:
            min = float(min)
        self.max = max
        self.min = min

F
fengjiayi 已提交
175 176 177
    def __str__(self):
        return "ByValue, min=%f, max=%f" % (self.min, self.max)

Y
yuyang18 已提交
178
    def _process_context(self, context, param, grad):
Y
Yu Yang 已提交
179 180
        pass

Y
yuyang18 已提交
181
    def _create_operators(self, param, grad):
Y
Yu Yang 已提交
182 183 184 185
        new_grad = layers.clip(x=grad, min=self.min, max=self.max)
        return param, new_grad


F
fengjiayi 已提交
186
class GradientClipByNorm(BaseGradientClipAttr):
187 188 189 190
    """ 
    Convert the input multidimensional Tensor :math:`X` to a multidimensional Tensor whose L2 norm does not exceed the given two-norm maximum ( :math:`clip\_norm` ). 

    The tensor is not passed through this class, but passed through the parametre of ``main_program`` in ``fluid.program_guard``.
191

192
    This class limits the L2 norm of the input :math:`X` within :math:`clip\_norm`.
193 194

    .. math::
195 196 197 198 199 200 201
        Out =
  	\\left \{
  	\\begin{aligned}
  	& X & & if (norm(X) \\leq clip\_norm) \\\\
  	& \\frac{clip\_norm*X}{norm(X)} & & if (norm(X) > clip\_norm) \\\\
  	\\end{aligned}
  	\\right.
202 203 204 205


    where :math:`norm(X)` represents the L2 norm of :math:`X`.

206 207
    .. math::
 	norm(X) = ( \\sum_{i=1}^{n}|x\_i|^2)^{ \\frac{1}{2}}
208

209 210 211
    Args:
        clip_norm(float): The maximum norm value
    
212 213 214
    Examples:
        .. code-block:: python

215
            import paddle.fluid as fluid
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
            import paddle.fluid.core as core
            import paddle
            place = core.CPUPlace()
            prog = fluid.framework.Program()
            startup_program = fluid.framework.Program()
            with fluid.program_guard(
                        main_program=prog, startup_program=startup_program):
                image = fluid.data(name='x', shape=[None, 784], dtype='float32', lod_level=0)
                label = fluid.data(name='y', shape=[None, 1], dtype='int64', lod_level=0)
                hidden1 = fluid.layers.fc(input=image, size=128, act='relu')
                hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu')
                predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')
                cost = fluid.layers.cross_entropy(input=predict, label=label)
                avg_cost = fluid.layers.mean(cost)
            prog_clip = prog.clone()
            avg_cost_clip = prog_clip.block(0).var(avg_cost.name)
            p_g = fluid.backward.append_backward(loss=avg_cost)
            p_g_clip = fluid.backward.append_backward(loss=avg_cost_clip)
            with fluid.program_guard(main_program=prog_clip, startup_program=startup_program):
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByNorm(clip_norm=2.0))
                p_g_clip = fluid.clip.append_gradient_clip_ops(p_g_clip)
            grad_list = [elem[1] for elem in p_g]
            grad_clip_list = [elem[1] for elem in p_g_clip]
            train_reader = paddle.batch( 
                paddle.reader.shuffle(
                    paddle.dataset.mnist.train(), buf_size=8192),
                batch_size=128)
  
            exe = fluid.Executor(place)
            feeder = fluid.DataFeeder(feed_list=[image, label], place=place)
            exe.run(startup_program)
  
            count = 0
            for data in train_reader():
                count += 1
                print("count:%s" % count)
                if count > 5:
                   break
                out = exe.run(prog, feed=feeder.feed(data), fetch_list=grad_list)
                out_clip = exe.run(prog_clip,
                                   feed=feeder.feed(data),
                                   fetch_list=grad_clip_list)
259 260 261

    """

F
fengjiayi 已提交
262 263 264
    def __init__(self, clip_norm):
        self.clip_norm = clip_norm

F
fengjiayi 已提交
265 266 267
    def __str__(self):
        return "ByNorm, clip_norm=%f" % self.clip_norm

Y
yuyang18 已提交
268
    def _process_context(self, context, param, grad):
F
fengjiayi 已提交
269 270
        pass

Y
yuyang18 已提交
271
    def _create_operators(self, param, grad):
F
fengjiayi 已提交
272 273 274 275
        new_grad = layers.clip_by_norm(x=grad, max_norm=self.clip_norm)
        return param, new_grad


F
fengjiayi 已提交
276
class GradientClipByGlobalNorm(BaseGradientClipAttr):
277 278 279
    """
    Clips values of multiple tensors by the ratio of the sum of their norms.

280 281 282 283 284 285
    Given a list of tensors ``t_list`` , and a clipping ratio ``clip_norm``,
    this operation returns a instance of this class as first parameter of
    ``set_gradient_clip`` method, second parameter of ``set_gradient_clip`` 
    is used to compute clipped tensors list ``list_clipped`` (default value 
    is ``None``, compute global norm ``global_norm`` based in all tensors).
    global norm (global_norm) of all tensors in t_list.
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

    To perform the clipping, the values :math:`t\_list[i]` are set to:

    .. math::

        t\_list[i] = t\_list[i] * \\frac{clip\_norm}{\max(global\_norm, clip\_norm)}

    where:

    .. math::

        global\_norm = \sqrt{\sum_{i=0}^{N-1}(l2norm(t\_list[i]))^2}

    If :math:`clip\_norm > global\_norm` then the entries in t_list remain as they are,
    otherwise they're all shrunk by the global ratio.

    Args:
        clip_norm (float): The maximum norm value
        group_name (str, optional): The group name for this clip.

    Examples:
        .. code-block:: python

309
            import paddle.fluid as fluid
310 311 312 313
            import paddle.fluid.core as core
            import paddle

            place = core.CPUPlace()
314 315 316 317 318 319 320 321 322 323 324
            prog = fluid.framework.Program()
            startup_program = fluid.framework.Program()
            with fluid.program_guard(
                    main_program=prog, startup_program=startup_program):
                image = fluid.layers.data(name='x', shape=[784], dtype='float32')
                label = fluid.layers.data(name='y', shape=[1], dtype='int64')
                hidden1 = fluid.layers.fc(input=image, size=128, act='relu')
                hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu')
                predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')
                cost = fluid.layers.cross_entropy(input=predict, label=label)
                avg_cost = fluid.layers.mean(cost)
325

326 327
            prog_clip = prog.clone()
            avg_cost_clip = prog_clip.block(0).var(avg_cost.name)
328 329

            p_g = fluid.backward.append_backward(loss=avg_cost)
330 331
            p_g_clip = fluid.backward.append_backward(loss=avg_cost_clip)

332
            with fluid.program_guard(main_program=prog_clip, startup_program=startup_program):
333 334 335 336
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByGlobalNorm(clip_norm=2.0))
                p_g_clip = fluid.clip.append_gradient_clip_ops(p_g_clip)

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
            grad_list = [elem[1] for elem in p_g]
            grad_clip_list = [elem[1] for elem in p_g_clip]

            train_reader = paddle.batch(
                paddle.reader.shuffle(
                    paddle.dataset.mnist.train(), buf_size=8192),
                batch_size=128)

            exe = fluid.Executor(place)
            feeder = fluid.DataFeeder(feed_list=[image, label], place=place)
            exe.run(startup_program)

            count = 0
            for data in train_reader():
                count += 1
                print("count:%s" % count)
                if count > 5:
                    break
                out = exe.run(prog, feed=feeder.feed(data), fetch_list=grad_list)
                out_clip = exe.run(prog_clip,
                                   feed=feeder.feed(data),
                                   fetch_list=grad_clip_list)

360 361
    """

F
update  
fengjiayi 已提交
362
    def __init__(self, clip_norm, group_name="default_group"):
363 364
        if not isinstance(group_name, six.string_types):
            raise TypeError("'group_name' must be a %s." % (six.string_types))
F
update  
fengjiayi 已提交
365 366 367

        self.clip_norm = clip_norm
        self.group_name = group_name
368

F
fengjiayi 已提交
369 370 371 372
    def __str__(self):
        return "ByGlobalNorm, group_name=%s, clip_norm=%f" % (self.group_name,
                                                              self.clip_norm)

Y
yuyang18 已提交
373
    def _process_context(self, context, param, grad):
F
update  
fengjiayi 已提交
374 375 376 377 378 379 380 381 382 383
        if self.group_name not in context:
            context[self.group_name] = []
            context[self.group_name + "_clip_value"] = self.clip_norm
            context[self.group_name + "_clip"] = layers.fill_constant(
                shape=[1], dtype="float32", value=self.clip_norm)
        else:
            if not self.clip_norm == context[self.group_name + "_clip_value"]:
                raise ValueError(
                    "All parameters' 'clip_norm' of a same group should be the same"
                )
F
fengjiayi 已提交
384

C
chengduo 已提交
385 386 387 388 389 390
        merge_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            merge_grad = layers.merge_selected_rows(grad)
            merge_grad = layers.get_tensor_from_selected_rows(merge_grad)

        square = layers.square(merge_grad)
P
phlrain 已提交
391
        local_norm_var = layers.reduce_sum(input=square)
F
update  
fengjiayi 已提交
392
        context[self.group_name].append(local_norm_var)
F
fengjiayi 已提交
393

F
update  
fengjiayi 已提交
394
        self.context = context
395

Y
yuyang18 已提交
396
    def _create_operators(self, param, grad):
F
update  
fengjiayi 已提交
397 398 399
        group_scale_name = self.group_name + "_scale"
        if group_scale_name not in self.context:
            group_norm_var = layers.sums(input=self.context[self.group_name])
T
tensor-tang 已提交
400
            group_norm_var = layers.sqrt(x=group_norm_var)
F
update  
fengjiayi 已提交
401 402 403
            clip_var = self.context[self.group_name + "_clip"]
            group_scale_var = layers.elementwise_div(
                x=clip_var,
F
fengjiayi 已提交
404
                y=layers.elementwise_max(
F
update  
fengjiayi 已提交
405
                    x=clip_var, y=group_norm_var))
406
            assert group_scale_var.shape == (1, )
F
update  
fengjiayi 已提交
407
            self.context[group_scale_name] = group_scale_var
F
fengjiayi 已提交
408

F
update  
fengjiayi 已提交
409 410
        new_grad = layers.elementwise_mul(
            x=grad, y=self.context[group_scale_name])
C
chengduo 已提交
411

412
        return param, new_grad
F
fengjiayi 已提交
413 414


415
@framework.dygraph_not_support
F
fengjiayi 已提交
416
def set_gradient_clip(clip, param_list=None, program=None):
F
fengjiayi 已提交
417
    """
418 419 420
    To specify parameters that require gradient clip.

    Args:
Z
Zeng Jinle 已提交
421
        clip (BaseGradientClipAttr): An instance of some derived class of BaseGradientClipAttr,
422
                for example :ref:`api_fluid_clip_GradientClipByGlobalNorm` ,
423
                which describes the type and detailed attributes of required gradient clip.
Z
Zeng Jinle 已提交
424
        param_list (list(Variable), optional): Parameters that require gradient clip.
425
                It can be a list of parameter or a list of parameter's name.
426
                Default None, meaning that all parameters in the program will be included.
Z
Zeng Jinle 已提交
427
        program (Program, optional): The program where parameters are located.
428 429 430 431 432 433 434 435 436 437 438
                Default None, meaning that using :ref:`api_fluid_default_main_program` .

    Returns:
        None

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid

            def network():
439
                image = fluid.data(name='image', shape=[None, 28], dtype='float32')
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
                param_attr1 = fluid.ParamAttr("fc1_param")
                fc1 = fluid.layers.fc(image, size=10, param_attr=param_attr1)
                param_attr2 = fluid.ParamAttr("fc2_param")
                fc2 = fluid.layers.fc(fc1, size=10, param_attr=param_attr2)
                loss = fluid.layers.reduce_mean(fc2)
                return loss


            # network 1: clip all parameter gradient
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByGlobalNorm(clip_norm=2.0))
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)

            # network 2: clip parameter gradient by name
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByValue(min=-1.0, max=1.0),
                    param_list=["fc1_param", "fc2_param"])
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)

            # network 3: clip parameter gradient by var
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                loss = network()
                param_var1 = fluid.default_main_program().global_block().var("fc1_param")
                param_var2 = fluid.default_main_program().global_block().var("fc2_param")
                fluid.clip.set_gradient_clip(
                    fluid.clip.GradientClipByValue(min=-1.0, max=1.0),
                    param_list=[param_var1, param_var2])
                sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                sgd.minimize(loss)
F
fengjiayi 已提交
475
    """
F
fengjiayi 已提交
476 477 478 479
    if not isinstance(clip, BaseGradientClipAttr):
        raise TypeError(
            "'clip' should be an instance of BaseGradientClipAttr's derived class"
        )
F
fengjiayi 已提交
480 481 482 483
    if program is None:
        program = framework.default_main_program()
    if param_list is None:
        param_list = program.block(0).all_parameters()
484
    if all(isinstance(elem, six.string_types) for elem in param_list):
F
fengjiayi 已提交
485 486 487 488 489 490 491
        param_list = [program.block(0).var(elem) for elem in param_list]
    if not all(isinstance(elem, framework.Parameter) for elem in param_list):
        raise TypeError(
            "'param_list' should be a list of Parameter or basestring(parameter's name)."
        )

    for param in param_list:
F
fengjiayi 已提交
492
        param.gradient_clip_attr = copy.deepcopy(clip)
F
fengjiayi 已提交
493 494


495
def append_gradient_clip_ops(param_grads):
Y
Yu Yang 已提交
496
    context = dict()
497 498 499
    for p, g in param_grads:
        if g is None:
            continue
X
Xin Pan 已提交
500 501
        with p.block.program._optimized_guard(
            [p, g]), framework.name_scope('append_clip'):
Y
yuyang18 已提交
502 503 504 505 506 507 508
            clip_attr = getattr(p, 'gradient_clip_attr', NullGradientClipAttr())
            if clip_attr is None:
                clip_attr = NullGradientClipAttr()
            if not isinstance(clip_attr, BaseGradientClipAttr):
                raise TypeError(
                    "clip attribute should be an instance of BaseGradientClipAttr"
                )
Y
Yu Yang 已提交
509

Y
yuyang18 已提交
510
            clip_attr._process_context(context=context, param=p, grad=g)
Y
yuyang18 已提交
511 512

    res = []
513 514 515
    for p, g in param_grads:
        if g is None:
            continue
X
Xin Pan 已提交
516 517
        with p.block.program._optimized_guard(
            [p, g]), framework.name_scope('append_graident_clip'):
Y
yuyang18 已提交
518
            res.append(clip_attr._create_operators(param=p, grad=g))
Y
Yu Yang 已提交
519

Y
yuyang18 已提交
520
    return res
Y
Yu Yang 已提交
521 522 523


ClipByValue = GradientClipByValue
F
fengjiayi 已提交
524 525
ClipByNorm = GradientClipByNorm
ClipByGlobalNorm = GradientClipByGlobalNorm