conv_mkldnn_op.cc 37.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include <unordered_map>
Y
Yu Yang 已提交
16 17
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/memory/malloc.h"
18
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29 30 31
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

Y
Yihua Xu 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
inline void GetWeightsTz(std::vector<int>& weights_tz, int groups,  // NOLINT
                         bool is_conv3d) {
  if (groups > 1) {
    if (is_conv3d) {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int dimension = weights_tz[2];
      int height = weights_tz[3];
      int width = weights_tz[4];
      weights_tz.resize(6);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = dimension;
      weights_tz[4] = height;
      weights_tz[5] = width;
    } else {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int height = weights_tz[2];
      int width = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = height;
      weights_tz[4] = width;
    }
  }
}

63 64
inline MKLDNNMemoryFormat GetWeightsFormat(MKLDNNMemoryFormat format,
                                           int groups, bool is_conv3d) {
Y
Yihua Xu 已提交
65
  if (is_conv3d) {
66
    return (groups == 1) ? format : MKLDNNMemoryFormat::goidhw;
Y
Yihua Xu 已提交
67
  } else {
68
    return (groups == 1) ? format : MKLDNNMemoryFormat::goihw;
Y
Yihua Xu 已提交
69 70 71
  }
}

72 73
static mkldnn::memory::data_type GetDstType(bool is_int8,
                                            bool force_fp32_output,
74
                                            std::string fuse_activation,
75 76 77 78
                                            bool fuse_residual_conn,
                                            const Tensor* residual_param) {
  auto dst_dt = mkldnn::memory::data_type::f32;  // uint8_t, int8_t, float
  if (is_int8) {
79 80 81
    dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
                 ? mkldnn::memory::data_type::u8
                 : mkldnn::memory::data_type::s8;
82 83 84 85 86 87 88 89 90 91 92
    if (force_fp32_output) {
      dst_dt = mkldnn::memory::data_type::f32;
    }
    if (fuse_residual_conn && residual_param) {
      auto residual_dt = framework::ToMKLDNNDataType(residual_param->type());
      if (dst_dt != residual_dt) dst_dt = residual_dt;
    }
  }
  return dst_dt;
}

93
template <typename T, typename K>
94
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
95 96 97 98
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
99 100 101 102 103
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
    if (!is_INT8) {
      ComputeFP32(ctx);
    } else {
104
      std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
105 106 107
      bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
      bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
      auto residual_param = ctx.Input<Tensor>("ResidualData");
108
      auto dst_dt = GetDstType(true, force_fp32_output, fuse_activation,
109 110 111 112 113 114 115 116
                               fuse_residual_conn, residual_param);
      if (dst_dt == mkldnn::memory::data_type::f32) {
        ComputeINT8<float>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::u8) {
        ComputeINT8<uint8_t>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::s8) {
        ComputeINT8<int8_t>(ctx);
      }
117 118
    }
  }
119

120
  void ComputeFP32(const paddle::framework::ExecutionContext& ctx) const {
K
Krzysztof Binias 已提交
121 122
    const bool is_test = ctx.Attr<bool>("is_test");

123 124
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
125 126 127 128
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
129
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
130 131
    auto* output = ctx.Output<Tensor>("Output");

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Input tensor");

    PADDLE_ENFORCE_EQ(filter->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Filter tensor");
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Filter tensor");

    PADDLE_ENFORCE_GE(
        input->dims().size(), 4,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
    PADDLE_ENFORCE_LE(
        input->dims().size(), 5,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");

    PADDLE_ENFORCE_GE(
        filter->dims().size(), 4,
        "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
    PADDLE_ENFORCE_LE(
        filter->dims().size(), 5,
        "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");

156
    if (bias) {
157 158 159 160 161 162 163
      PADDLE_ENFORCE_EQ(bias->layout(), DataLayout::kMKLDNN,
                        "Wrong layout set for Bias tensor");
      PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::format_undef,
                        "Wrong format set for Bias tensor");

      PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                        "Bias must only have 1 dimension, i.e. X");
164
    }
165 166 167 168

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
169 170 171
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    float fuse_alpha = ctx.Attr<float>("fuse_alpha");
    float fuse_beta = ctx.Attr<float>("fuse_beta");
172
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
173
    int groups = ctx.Attr<int>("groups");
174
    bool is_conv3d = strides.size() == 3U;
175

176
    PADDLE_ENFORCE(
177 178 179 180
        is_conv3d
            ? dilations.size() == 3 && dilations[0] == 1 && dilations[1] == 1 &&
                  dilations[2] == 1
            : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
181 182 183 184 185
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();

186 187
    auto src_tz = paddle::framework::vectorize<int>(input->dims());
    auto weights_tz = paddle::framework::vectorize<int>(filter->dims());
188
    int g = std::max(groups, 1);
Y
Yihua Xu 已提交
189
    GetWeightsTz(weights_tz, g, is_conv3d);
190
    auto dst_tz = paddle::framework::vectorize<int>(output->dims());
191

192
    // Get unique name for storing MKLDNN primitives
J
Jacek Czaja 已提交
193
    const std::string key = platform::ConvMKLDNNHandler::GetHash(
194
        src_tz, weights_tz, fuse_activation, strides, paddings, dilations,
195
        groups, ctx.op().Input("Input") + ctx.op().Input("Filter"));
196 197 198

    std::vector<primitive> pipeline;

199
    auto src_format = input->format();
200
    MKLDNNMemoryFormat weights_format =
201 202 203 204 205 206
        GetWeightsFormat(filter->format(), g, is_conv3d);

    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
207 208 209 210 211

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
212 213 214 215
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

216
    weights_format = MKLDNNMemoryFormat::any;
217
    // Check the format for user's special output
218
    if (chosen_memory_format != MKLDNNMemoryFormat::any) {
219 220 221 222
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
223 224
    }

225
    auto src_md = platform::MKLDNNMemDesc(
226
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
227
    auto weights_md = platform::MKLDNNMemDesc(
228
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
229
    std::vector<int> bias_tz;
230
    auto dst_md = platform::MKLDNNMemDesc(
231
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
232

233 234
    platform::ConvMKLDNNHandler handler(dev_ctx, mkldnn_engine, key);

235
    // create a conv primitive descriptor and save it for usage in backward
236
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
237 238
    auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                 : mkldnn::prop_kind::forward_training;
239
    if (bias) {
240
      bias_tz = paddle::framework::vectorize<int>(bias->dims());
241
      auto bias_md = platform::MKLDNNMemDesc(
242
          bias_tz, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::x);
243
      conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
244
          src_md, weights_md, bias_md, dst_md, strides, paddings, mkldnn_engine,
245
          fuse_activation, fuse_alpha, fuse_beta, fuse_residual_conn,
246
          fwd_prop_kind);
247
    } else {
248 249
      conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
          src_md, weights_md, boost::none, dst_md, strides, paddings,
250 251
          mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
          fuse_residual_conn, fwd_prop_kind);
252
    }
253

254
    // create mkldnn memory from input tensors (data/weights)
255 256
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
257
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
258
        user_weights_md, to_void_cast<T>(filter_data));
259

260 261 262 263 264
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
    auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
        user_weights_memory_p, pipeline, is_test);
265

266
    std::shared_ptr<mkldnn::memory> dst_memory_p, user_residual_memory_p;
267

268
    if (fuse_residual_conn) {
269 270
      auto residual_param = ctx.Input<Tensor>("ResidualData");
      auto residual_param_data = residual_param->data<T>();
271

272 273 274 275 276 277
      PADDLE_ENFORCE(
          residual_param_data != nullptr,
          "Provide data if you want MKLDNN conv+elementwise_add fusion");
      PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                        "Output and elementwise parameter need to have the "
                        "same dimension sizes");
278

279
      if (residual_param->format() != handler.GetDstFormat()) {
280 281
        auto output_data =
            output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
282
        auto residual_data_tz =
283
            paddle::framework::vectorize<int>(residual_param->dims());
284 285 286 287 288
        auto residual_data_type =
            paddle::framework::ToMKLDNNDataType(residual_param->type());

        auto user_residual_md = platform::MKLDNNMemDesc(
            residual_data_tz, residual_data_type, residual_param->format());
289
        user_residual_memory_p = handler.AcquireResidualDataMemory(
290
            user_residual_md, to_void_cast<T>(residual_param_data));
291 292 293

        dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
            user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
294 295
      } else {
        output->ShareDataWith(*residual_param);
296 297 298
        auto output_data = output->mutable_data<T>(ctx.GetPlace());
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
299
      }
300
    } else {
301 302
      auto output_data =
          output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
303 304
      dst_memory_p =
          handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
305
    }
306 307

    // create convolution op primitive
308
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
309
    std::shared_ptr<mkldnn::memory> user_bias_memory_p, bias_memory_p;
310 311 312
    if (bias) {
      const T* bias_data = bias->data<T>();
      auto user_bias_md = platform::MKLDNNMemDesc(
313
          {bias_tz}, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::x);
314
      user_bias_memory_p =
315 316
          handler.AcquireBiasMemory(user_bias_md, to_void_cast<T>(bias_data));

317
      bias_memory_p =
318 319 320 321 322 323 324
          handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }
325 326

    // push primitive to stream and wait until it's executed
327
    pipeline.push_back(*conv_p);
328 329
    stream(stream::kind::eager).submit(pipeline).wait();

330 331
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
332
  }
333
  template <typename T_out>
334 335 336 337 338 339 340 341 342 343 344 345
  void ComputeINT8(const paddle::framework::ExecutionContext& ctx) const {
    const bool is_test = ctx.Attr<bool>("is_test");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Input tensor");

    PADDLE_ENFORCE_EQ(filter->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Filter tensor");
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Filter tensor");

    PADDLE_ENFORCE_GE(
        input->dims().size(), 4,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
    PADDLE_ENFORCE_LE(
        input->dims().size(), 5,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");

    PADDLE_ENFORCE_GE(
        filter->dims().size(), 4,
        "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
    PADDLE_ENFORCE_LE(
        filter->dims().size(), 5,
        "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");

370
    if (bias) {
371 372 373 374 375 376 377
      PADDLE_ENFORCE_EQ(bias->layout(), DataLayout::kMKLDNN,
                        "Wrong layout set for Bias tensor");
      PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::format_undef,
                        "Wrong format set for Bias tensor");

      PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                        "Bias must only have 1 dimension, i.e. X");
378 379 380 381 382 383
    }

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
384 385 386
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    float fuse_alpha = ctx.Attr<float>("fuse_alpha");
    float fuse_beta = ctx.Attr<float>("fuse_beta");
X
xiaolil1 已提交
387
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
388
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
389 390
    bool unsigned_output =
        (fuse_activation == "relu" || fuse_activation == "relu6");
391 392 393 394

    PADDLE_ENFORCE(!fuse_residual_conn || !force_fp32_output,
                   "residual fusion does not support force output with fp32");

395 396 397 398 399 400 401
    bool is_conv3d = strides.size() == 3U;
    PADDLE_ENFORCE(
        is_conv3d
            ? dilations.size() == 3 && dilations[0] == 1 && dilations[1] == 1 &&
                  dilations[2] == 1
            : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");
X
xiaolil1 已提交
402

403 404 405 406
    PADDLE_ENFORCE(is_conv3d != true, "int8 does not support conv3d currently");

    const T* input_data = input->data<T>();

407 408
    auto src_tz = paddle::framework::vectorize<int>(input->dims());
    auto weights_tz = paddle::framework::vectorize<int>(filter->dims());
409
    int g = std::max(groups, 1);
410

411
    GetWeightsTz(weights_tz, g, is_conv3d);
412
    auto dst_tz = paddle::framework::vectorize<int>(output->dims());
413

X
xiaolil1 已提交
414 415
    mkldnn::memory::data_type src_dt =
        paddle::framework::ToMKLDNNDataType(input->type());
416

417 418 419
    // Get unique name for storing MKLDNN primitives
    std::string key;
    key.reserve(MaxKeyLength);
A
Adam 已提交
420
    platform::ConvMKLDNNHandler::CreateKey(
421
        &key, src_tz, weights_tz, strides, paddings, dilations, groups, src_dt,
422
        input->format(), fuse_activation, fuse_residual_conn,
423
        ctx.op().Input("Input") + ctx.op().Input("Filter"));
424

425 426
    const std::string key_conv_pd = key + "@conv_pd";

X
xiaolil1 已提交
427
    bool need_s8_to_u8 = false;
428 429 430 431
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    std::shared_ptr<mkldnn::memory> src_memory_p;
    std::shared_ptr<mkldnn::memory> user_src_memory_p;
    std::shared_ptr<mkldnn::memory> dst_memory_p;
432
    std::vector<primitive> pipeline;
433 434
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
    std::shared_ptr<platform::ConvMKLDNNHandler> handler;
435

436 437 438 439 440 441
    // This is workaround for hacky implementation
    // of conv int8 mkl-dnn. Once conv fp32 and conv int8
    // are merged/unified, this will disappear
    std::string key_tid = "";
    if (platform::get_cur_mkldnn_session_id() ==
        platform::kMKLDNNSessionID_Default) {
A
Adam 已提交
442
      key_tid = "-t:" + platform::ThreadIDasStr();
443 444 445 446 447 448 449 450
    }

    auto prim_key = key + key_tid + "@conv_p";
    auto dst_key = key + key_tid + "@dst_mem_p";
    auto src_key = key + key_tid + "@src_mem_p";
    auto user_src_key = key + key_tid + "@user_src_mem_p";
    auto src_reorder_key = key + key_tid + "@src_mem_preorder_p";
    auto residual_reorder_key = key + key_tid + "@residual_data_mem_preorder_p";
X
xiaolil1 已提交
451

452 453
    conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx.GetBlob(prim_key));
X
xiaolil1 已提交
454

455 456 457
    if (conv_p == nullptr || !is_test) {
      const K* filter_data = filter->data<K>();
      auto scale_in_data = ctx.Attr<float>("Scale_in");
X
xiaolil1 已提交
458
      auto scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
459 460 461
      auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
      auto scale_out_data =
          force_fp32_output ? 1.0f : ctx.Attr<float>("Scale_out");
X
xiaolil1 已提交
462 463
      float sum_scale =
          fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479

      bool is_multi_channel = scale_weights_data.size() > 1;

      int count = is_multi_channel ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0]
                                            : (weights_tz)[0])
                                   : 1;
      std::vector<float> output_shift_scale(count);
#pragma omp parallel for if (count > 1)
      for (int i = 0; i < count; i++) {
        if (scale_weights_data[i] == 0.0)
          output_shift_scale[i] =
              scale_out_data;  // weights data will contain 0
                               // in some models, then weights
                               // scale couldn't be calculated
        else
          output_shift_scale[i] =
480 481 482
              static_cast<float>(static_cast<double>(scale_out_data) /
                                 (static_cast<double>(scale_in_data) *
                                  static_cast<double>(scale_weights_data[i])));
483 484 485 486 487 488
      }

      auto user_src_md =
          platform::MKLDNNMemDesc({src_tz}, src_dt, input->format());
      auto user_weights_md = platform::MKLDNNMemDesc(
          {weights_tz}, platform::MKLDNNGetDataType<K>(),
489
          ((g) == 1) ? MKLDNNMemoryFormat::oihw : MKLDNNMemoryFormat::goihw);
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504

      /* create memory descriptor for convolution without specified format
      * ('any') which lets a primitive (convolution in this case) choose
      * the memory format preferred for best performance
      */
      std::string data_format = ctx.Attr<std::string>("data_format");
      auto chosen_memory_format =
          platform::data_format_to_memory_format(data_format);

      std::vector<int> bias_tz;

      auto src_md =
          platform::MKLDNNMemDesc(src_tz, src_dt, chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, memory::data_type::s8, chosen_memory_format);
505 506
      auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
X
xiaolil1 已提交
507

508 509
      handler.reset(
          new platform::ConvMKLDNNHandler(dev_ctx, mkldnn_engine, key));
510
      // create a conv primitive descriptor and save it for usage in backward
511 512 513
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring
                                 : mkldnn::prop_kind::forward_training;

514
      if (bias) {
515
        bias_tz = paddle::framework::vectorize<int>(bias->dims());
516
        auto bias_md = platform::MKLDNNMemDesc(bias_tz, memory::data_type::s32,
517
                                               MKLDNNMemoryFormat::x);
518 519
        conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
            src_md, weights_md, bias_md, dst_md, strides, paddings,
520 521
            mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
            fuse_residual_conn, propagation, output_shift_scale, sum_scale);
522 523 524
      } else {
        conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
            src_md, weights_md, boost::none, dst_md, strides, paddings,
525 526
            mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
            fuse_residual_conn, propagation, output_shift_scale, sum_scale);
527
      }
528

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
      // create mkldnn memory from input tensors (data/weights)
      user_src_memory_p =
          handler->AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
      auto user_weights_memory_p = handler->AcquireWeightsMemory(
          user_weights_md, to_void_cast<K>(filter_data));

      // create reorder primitive if the input format is not the preferred one
      src_memory_p =
          handler->AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);

      std::shared_ptr<mkldnn::memory> weights_memory_p;
      int mask_reorder =
          is_multi_channel ? ((g != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
      weights_memory_p = handler->AcquireWeightsMemoryFromPrimitive(
          user_weights_memory_p, pipeline, is_test, true, scale_weights_data,
          mask_reorder);

X
xiaolil1 已提交
546 547 548 549 550 551 552 553 554
      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                          "Output and elementwise parameter need to have the "
                          "same dimension sizes");
        auto residual_dt =
            paddle::framework::ToMKLDNNDataType(residual_param->type());
        if (residual_param->format() != handler->GetDstFormat()) {
          auto residual_data_tz =
555
              paddle::framework::vectorize<int>(residual_param->dims());
X
xiaolil1 已提交
556 557
          auto user_residual_md = platform::MKLDNNMemDesc(
              residual_data_tz, residual_dt, residual_param->format());
558 559 560
          dst_memory_p = platform::SetDstMemory<T_out>(
              ctx, output, residual_param, user_residual_md, handler,
              &pipeline);
X
xiaolil1 已提交
561 562
        } else {
          output->ShareDataWith(*residual_param);
563
          dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
X
xiaolil1 已提交
564
        }
565 566 567
        need_s8_to_u8 =
            (platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
            unsigned_output;
568
      } else {
569
        dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
570 571 572 573 574
      }

      // create convolution op primitive
      auto scale_bias_key = key + "@scale_bias";
      if (bias) {
X
xiaolil1 已提交
575
        const K* bias_data = bias->data<K>();
576
        auto user_bias_md = platform::MKLDNNMemDesc(
577
            {bias_tz}, platform::MKLDNNGetDataType<K>(), MKLDNNMemoryFormat::x);
578
        auto user_bias_memory_p = handler->AcquireBiasMemory(
X
xiaolil1 已提交
579
            user_bias_md, to_void_cast<K>(bias_data));
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
        std::shared_ptr<mkldnn::memory> bias_memory_p;
        int mask_reorder = is_multi_channel ? 1 << 0 : 1;
        int count =
            is_multi_channel
                ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
                : 1;
        std::vector<float> scale_bias_data(count);
#pragma omp parallel for if (count > 1)
        for (int i = 0; i < count; i++) {
          scale_bias_data[i] = scale_in_data * scale_weights_data[i];
        }
        bias_memory_p = handler->AcquireBiasMemoryFromPrimitive(
            user_bias_memory_p, pipeline, is_test, true, scale_bias_data,
            mask_reorder);
        conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
                                             bias_memory_p, dst_memory_p);
      } else {
        conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
                                             dst_memory_p);
      }
      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_p);
    } else {
      auto src_memory_reorder_p = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(src_reorder_key));
      src_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(src_key));
      if (src_memory_reorder_p) {
        user_src_memory_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_src_key));
        user_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      } else if (src_memory_p) {
        src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      }

      dst_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(dst_key));
      conv_pd =
          std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
              dev_ctx.GetBlob(key_conv_pd));
      if (conv_pd) {
        handler.reset(new platform::ConvMKLDNNHandler(conv_pd, dev_ctx,
                                                      mkldnn_engine, key));
      }
X
xiaolil1 已提交
624 625 626 627

      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        output->ShareDataWith(*residual_param);
628 629 630
        need_s8_to_u8 =
            (platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
            unsigned_output;
631
      }
632
      platform::SetDstMemoryHandler<T_out>(ctx, output, handler, dst_memory_p);
X
xiaolil1 已提交
633

634 635 636
      if (src_memory_reorder_p) {
        pipeline.push_back(*src_memory_reorder_p);
      }
X
xiaolil1 已提交
637 638 639 640 641 642

      auto residual_reorder_p = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(residual_reorder_key));
      if (residual_reorder_p) {
        pipeline.push_back(*residual_reorder_p);
      }
643 644 645 646
      pipeline.push_back(*conv_p);
    }
    // push primitive to stream and wait until it's executed
    stream(stream::kind::eager).submit(pipeline).wait();
X
xiaolil1 已提交
647 648 649
    if (need_s8_to_u8) {
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }
650 651 652
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
  }
653 654 655
};

template <typename T>
656
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
657 658 659 660 661
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

662 663
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
664 665 666 667 668 669 670 671 672
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

673 674 675 676
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Input tensor");
677

678 679 680 681 682 683 684 685 686 687 688 689
    PADDLE_ENFORCE_EQ(filter->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Filter tensor");
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Filter tensor");

    PADDLE_ENFORCE_EQ(output_grad->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for output_grad tensor");
    PADDLE_ENFORCE_NE(output_grad->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for output_grad tensor");

    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"), false,
690 691
        "is_test attribute should be set to False in training phase.");

692 693 694 695
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
696 697
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
698

699
    bool is_conv3d = strides.size() == 3U;
700 701 702 703 704 705
    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

706 707
    auto src_tz = paddle::framework::vectorize<int>(input->dims());
    auto weights_tz = paddle::framework::vectorize<int>(filter->dims());
708
    int g = std::max(groups, 1);
Y
Yihua Xu 已提交
709
    GetWeightsTz(weights_tz, g, is_conv3d);
710
    auto dst_tz = paddle::framework::vectorize<int>(output_grad->dims());
711
    auto src_format = input->format();
712
    MKLDNNMemoryFormat weights_format =
Y
Yihua Xu 已提交
713
        GetWeightsFormat(filter->format(), g, is_conv3d);
714

715
    // Get an unique name from "argument" name of "input" and "Filter" variable
J
Jacek Czaja 已提交
716
    // as well as attributes of primitive to be created
717
    // This name will be used as key when saving info into device context
J
Jacek Czaja 已提交
718
    const std::string key = platform::ConvMKLDNNHandler::GetHash(
719 720
        src_tz, weights_tz, "", strides, paddings, dilations, groups,
        ctx.op().Input("Input") + ctx.op().Input("Filter"));
721 722

    const std::string key_conv_pd = key + "@conv_pd";
723
    std::vector<primitive> pipeline;
724

725 726
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
727
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
728
    auto user_weights_md = platform::MKLDNNMemDesc(
729
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
730 731
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
732 733 734 735 736

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
737 738 739 740
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

741
    weights_format = MKLDNNMemoryFormat::any;
742
    // Check the format for user's special output
743
    if (chosen_memory_format != MKLDNNMemoryFormat::any) {
744 745 746 747
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
748 749
    }

750
    auto src_md = platform::MKLDNNMemDesc(
751
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
752
    auto diff_src_md = platform::MKLDNNMemDesc(
753
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
754
    auto weights_md = platform::MKLDNNMemDesc(
755
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
756
    auto diff_weights_md = platform::MKLDNNMemDesc(
757
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
758
    auto diff_dst_md = platform::MKLDNNMemDesc(
759
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
760

761
    // Retrieve conv_pd from device context
762 763 764
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
765 766 767
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

J
Jacek Czaja 已提交
784 785 786
    platform::ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd,
                                        conv_bwd_weights_pd, dev_ctx,
                                        mkldnn_engine, key);
787 788 789 790 791 792 793 794 795

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));

796 797
    // create backward conv primitive for weights
    if (filter_grad) {
798 799
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
800

801 802 803 804
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

805
      const size_t size = handler.GetDiffWeightsMemorySize();
806
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);
807

808 809 810 811 812 813 814 815 816
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
817

818 819
      filter_grad->set_layout(DataLayout::kMKLDNN);
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
820 821 822
    }

    if (input_grad) {
823 824 825 826 827 828 829
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

830
      const size_t size = handler.GetDiffSourceMemorySize();
831
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);
832

833 834 835 836 837 838 839
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
840

841 842
      input_grad->set_layout(DataLayout::kMKLDNN);
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
843
    }
844
    stream(stream::kind::eager).submit(pipeline).wait();
X
xiaolil1 已提交
845
  }
846 847 848 849 850 851 852
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
853 854 855
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
856 857 858 859
                                    ops::ConvMKLDNNOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
860
                                    ops::kConvMKLDNNINT8,
861 862 863 864
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
865
                                    ops::kConvMKLDNNINT8,
866
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
867 868 869 870 871

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);
872 873 874 875

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
876
                                    ops::ConvMKLDNNOpKernel<float, float>);
877 878 879 880 881

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);