test_cast_op.py 6.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import unittest
16 17

import gradient_checker
Y
Yu Yang 已提交
18
import numpy as np
19 20
from decorator_helper import prog_scope
from op_test import OpTest, convert_float_to_uint16, convert_uint16_to_float
21 22

import paddle
23
import paddle.fluid as fluid
24 25
import paddle.fluid.core as core
import paddle.fluid.layers as layers
26
from paddle.fluid import Program, program_guard
H
hong 已提交
27
from paddle.fluid.framework import _test_eager_guard
Y
Yu Yang 已提交
28 29


Y
Yiqun Liu 已提交
30
class TestCastOpFp32ToFp64(OpTest):
Y
Yu Yang 已提交
31 32 33 34 35
    def setUp(self):
        ipt = np.random.random(size=[10, 10])
        self.inputs = {'X': ipt.astype('float32')}
        self.outputs = {'Out': ipt.astype('float64')}
        self.attrs = {
36
            'in_dtype': int(core.VarDesc.VarType.FP32),
37
            'out_dtype': int(core.VarDesc.VarType.FP64),
Y
Yu Yang 已提交
38 39 40 41 42 43 44 45 46 47
        }
        self.op_type = 'cast'

    def test_check_output(self):
        self.check_output()

    def test_grad(self):
        self.check_grad(['X'], ['Out'])


Y
Yiqun Liu 已提交
48
class TestCastOpFp16ToFp32(OpTest):
K
Kexin Zhao 已提交
49 50
    def setUp(self):
        ipt = np.random.random(size=[10, 10])
51
        self.inputs = {'X': ipt.astype('float16')}
K
Kexin Zhao 已提交
52 53 54
        self.outputs = {'Out': ipt.astype('float32')}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.FP16),
55
            'out_dtype': int(core.VarDesc.VarType.FP32),
K
Kexin Zhao 已提交
56 57
        }
        self.op_type = 'cast'
Z
zhangbo9674 已提交
58
        self.__class__.no_need_check_grad = True
K
Kexin Zhao 已提交
59 60

    def test_check_output(self):
K
Kexin Zhao 已提交
61
        self.check_output(atol=1e-3)
K
Kexin Zhao 已提交
62 63


Y
Yiqun Liu 已提交
64
class TestCastOpFp32ToFp16(OpTest):
K
Kexin Zhao 已提交
65 66 67 68 69 70
    def setUp(self):
        ipt = np.random.random(size=[10, 10])
        self.inputs = {'X': ipt.astype('float32')}
        self.outputs = {'Out': ipt.astype('float16')}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.FP32),
71
            'out_dtype': int(core.VarDesc.VarType.FP16),
K
Kexin Zhao 已提交
72 73
        }
        self.op_type = 'cast'
Z
zhangbo9674 已提交
74
        self.__class__.no_need_check_grad = True
K
Kexin Zhao 已提交
75 76

    def test_check_output(self):
K
Kexin Zhao 已提交
77
        self.check_output(atol=1e-3)
K
Kexin Zhao 已提交
78 79


Y
Yiqun Liu 已提交
80 81 82 83 84 85 86
class TestCastOpBf16ToFp32(OpTest):
    def setUp(self):
        ipt = np.array(np.random.randint(10, size=[10, 10])).astype('uint16')
        self.inputs = {'X': ipt}
        self.outputs = {'Out': convert_uint16_to_float(ipt)}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.BF16),
87
            'out_dtype': int(core.VarDesc.VarType.FP32),
Y
Yiqun Liu 已提交
88 89
        }
        self.op_type = 'cast'
Z
zhangbo9674 已提交
90
        self.__class__.no_need_check_grad = True
Y
Yiqun Liu 已提交
91 92 93 94 95 96 97 98 99 100 101 102

    def test_check_output(self):
        self.check_output()


class TestCastOpFp32ToBf16(OpTest):
    def setUp(self):
        ipt = np.random.random(size=[10, 10]).astype('float32')
        self.inputs = {'X': ipt}
        self.outputs = {'Out': convert_float_to_uint16(ipt)}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.FP32),
103
            'out_dtype': int(core.VarDesc.VarType.BF16),
Y
Yiqun Liu 已提交
104 105
        }
        self.op_type = 'cast'
Z
zhangbo9674 已提交
106
        self.__class__.no_need_check_grad = True
Y
Yiqun Liu 已提交
107 108 109 110 111

    def test_check_output(self):
        self.check_output()


112
class TestCastOpError(unittest.TestCase):
113 114 115
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of cast_op must be Variable.
116 117 118
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace()
            )
119 120 121
            self.assertRaises(TypeError, fluid.layers.cast, x1, 'int32')


H
hong 已提交
122 123 124 125 126 127 128
class TestCastOpEager(unittest.TestCase):
    def test_eager(self):
        with paddle.fluid.dygraph.base.guard():
            with _test_eager_guard():
                x = paddle.ones([2, 2], dtype="float16")
                x.stop_gradient = False
                out = paddle.cast(x, "float32")
129 130 131
                np.testing.assert_array_equal(
                    out, np.ones([2, 2]).astype('float32')
                )
H
hong 已提交
132
                out.backward()
133
                np.testing.assert_array_equal(x.gradient(), x.numpy())
H
hong 已提交
134 135 136
                self.assertTrue(x.gradient().dtype == np.float16)


137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
class TestCastDoubleGradCheck(unittest.TestCase):
    def cast_wrapper(self, x):
        return paddle.cast(x[0], 'float64')

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 3, 4], False, dtype)
        data.persistable = True
        out = paddle.cast(data, 'float64')
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

152 153 154
        gradient_checker.double_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
155
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
156 157 158
        gradient_checker.double_grad_check_for_dygraph(
            self.cast_wrapper, [data], out, x_init=[data_arr], place=place
        )
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestCastTripleGradCheck(unittest.TestCase):
    def cast_wrapper(self, x):
        return paddle.cast(x[0], 'float64')

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 3, 4], False, dtype)
        data.persistable = True
        out = paddle.cast(data, 'float64')
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

184 185 186
        gradient_checker.triple_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
187
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
188 189 190
        gradient_checker.triple_grad_check_for_dygraph(
            self.cast_wrapper, [data], out, x_init=[data_arr], place=place
        )
191 192 193 194 195 196 197 198 199 200

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


Y
Yu Yang 已提交
201
if __name__ == '__main__':
202
    paddle.enable_static()
Y
Yu Yang 已提交
203
    unittest.main()