test_cast_op.py 7.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15 16
import unittest
import numpy as np
17 18

import paddle
19
import paddle.fluid.core as core
20 21
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
Y
Yiqun Liu 已提交
22
from op_test import OpTest, convert_uint16_to_float, convert_float_to_uint16
H
hong 已提交
23
from paddle.fluid.framework import _test_eager_guard
24 25 26
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
Y
Yu Yang 已提交
27 28


Y
Yiqun Liu 已提交
29
class TestCastOpFp32ToFp64(OpTest):
30

Y
Yu Yang 已提交
31 32 33 34 35
    def setUp(self):
        ipt = np.random.random(size=[10, 10])
        self.inputs = {'X': ipt.astype('float32')}
        self.outputs = {'Out': ipt.astype('float64')}
        self.attrs = {
36 37
            'in_dtype': int(core.VarDesc.VarType.FP32),
            'out_dtype': int(core.VarDesc.VarType.FP64)
Y
Yu Yang 已提交
38 39 40 41 42 43 44 45 46 47
        }
        self.op_type = 'cast'

    def test_check_output(self):
        self.check_output()

    def test_grad(self):
        self.check_grad(['X'], ['Out'])


Y
Yiqun Liu 已提交
48
class TestCastOpFp16ToFp32(OpTest):
49

K
Kexin Zhao 已提交
50 51
    def setUp(self):
        ipt = np.random.random(size=[10, 10])
52
        self.inputs = {'X': ipt.astype('float16')}
K
Kexin Zhao 已提交
53 54 55 56 57 58
        self.outputs = {'Out': ipt.astype('float32')}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.FP16),
            'out_dtype': int(core.VarDesc.VarType.FP32)
        }
        self.op_type = 'cast'
Z
zhangbo9674 已提交
59
        self.__class__.no_need_check_grad = True
K
Kexin Zhao 已提交
60 61

    def test_check_output(self):
K
Kexin Zhao 已提交
62
        self.check_output(atol=1e-3)
K
Kexin Zhao 已提交
63 64


Y
Yiqun Liu 已提交
65
class TestCastOpFp32ToFp16(OpTest):
66

K
Kexin Zhao 已提交
67 68 69 70 71 72 73 74 75
    def setUp(self):
        ipt = np.random.random(size=[10, 10])
        self.inputs = {'X': ipt.astype('float32')}
        self.outputs = {'Out': ipt.astype('float16')}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.FP32),
            'out_dtype': int(core.VarDesc.VarType.FP16)
        }
        self.op_type = 'cast'
Z
zhangbo9674 已提交
76
        self.__class__.no_need_check_grad = True
K
Kexin Zhao 已提交
77 78

    def test_check_output(self):
K
Kexin Zhao 已提交
79
        self.check_output(atol=1e-3)
K
Kexin Zhao 已提交
80 81


Y
Yiqun Liu 已提交
82
class TestCastOpBf16ToFp32(OpTest):
83

Y
Yiqun Liu 已提交
84 85 86 87 88 89 90 91 92
    def setUp(self):
        ipt = np.array(np.random.randint(10, size=[10, 10])).astype('uint16')
        self.inputs = {'X': ipt}
        self.outputs = {'Out': convert_uint16_to_float(ipt)}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.BF16),
            'out_dtype': int(core.VarDesc.VarType.FP32)
        }
        self.op_type = 'cast'
Z
zhangbo9674 已提交
93
        self.__class__.no_need_check_grad = True
Y
Yiqun Liu 已提交
94 95 96 97 98 99

    def test_check_output(self):
        self.check_output()


class TestCastOpFp32ToBf16(OpTest):
100

Y
Yiqun Liu 已提交
101 102 103 104 105 106 107 108 109
    def setUp(self):
        ipt = np.random.random(size=[10, 10]).astype('float32')
        self.inputs = {'X': ipt}
        self.outputs = {'Out': convert_float_to_uint16(ipt)}
        self.attrs = {
            'in_dtype': int(core.VarDesc.VarType.FP32),
            'out_dtype': int(core.VarDesc.VarType.BF16)
        }
        self.op_type = 'cast'
Z
zhangbo9674 已提交
110
        self.__class__.no_need_check_grad = True
Y
Yiqun Liu 已提交
111 112 113 114 115

    def test_check_output(self):
        self.check_output()


116
class TestCastOpError(unittest.TestCase):
117

118 119 120
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of cast_op must be Variable.
121 122
            x1 = fluid.create_lod_tensor(np.array([[-1]]), [[1]],
                                         fluid.CPUPlace())
123 124 125
            self.assertRaises(TypeError, fluid.layers.cast, x1, 'int32')


H
hong 已提交
126
class TestCastOpEager(unittest.TestCase):
127

H
hong 已提交
128 129 130 131 132 133
    def test_eager(self):
        with paddle.fluid.dygraph.base.guard():
            with _test_eager_guard():
                x = paddle.ones([2, 2], dtype="float16")
                x.stop_gradient = False
                out = paddle.cast(x, "float32")
134 135
                np.testing.assert_array_equal(out,
                                              np.ones([2, 2]).astype('float32'))
H
hong 已提交
136
                out.backward()
137
                np.testing.assert_array_equal(x.gradient(), x.numpy())
H
hong 已提交
138 139 140
                self.assertTrue(x.gradient().dtype == np.float16)


141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
class TestCastDoubleGradCheck(unittest.TestCase):

    def cast_wrapper(self, x):
        return paddle.cast(x[0], 'float64')

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 3, 4], False, dtype)
        data.persistable = True
        out = paddle.cast(data, 'float64')
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.double_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.double_grad_check_for_dygraph(self.cast_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestCastTripleGradCheck(unittest.TestCase):

    def cast_wrapper(self, x):
        return paddle.cast(x[0], 'float64')

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 3, 4], False, dtype)
        data.persistable = True
        out = paddle.cast(data, 'float64')
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.triple_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.triple_grad_check_for_dygraph(self.cast_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


Y
Yu Yang 已提交
215
if __name__ == '__main__':
216
    paddle.enable_static()
Y
Yu Yang 已提交
217
    unittest.main()