momentum.py 25.6 KB
Newer Older
J
Jiawei Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

J
Jiangxinz 已提交
15 16
import warnings

J
Jiawei Wang 已提交
17 18 19
from .optimizer import Optimizer
from ..fluid import core
from ..fluid import framework
20
from ..fluid.layer_helper import LayerHelper
H
huangxu96 已提交
21 22 23
from ..fluid import unique_name
from ..fluid import layers
from paddle.fluid.regularizer import L2DecayRegularizer
24
from paddle import _C_ops, _legacy_C_ops
25
import paddle
26
from paddle.fluid.framework import in_dygraph_mode, _in_legacy_dygraph
J
Jiawei Wang 已提交
27

28 29
__all__ = []

J
Jiawei Wang 已提交
30 31

class Momentum(Optimizer):
32
    r"""
J
Jiawei Wang 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

        &\quad   param = param - (gradient + mu * velocity) * learning\_rate

        & else:

        &\quad   param = param - learning\_rate * velocity

    Parameters:

        learning_rate (float|Tensor|LearningRateDecay, optional): The learning rate used to update ``Parameter``.
            It can be a float value, a ``Tensor`` with a float type or a LearningRateDecay. The default value is 0.001.
        momentum (float): Momentum factor. The default value is 0.9.
57 58 59 60 61
        parameters (list|tuple, optional): List|Tuple of ``Tensor`` to update to minimize ``loss``. \
            This parameter is required in dygraph mode. And you can specify different options for \
            different parameter groups such as the learning rate, weight decay, etc, \
            then the parameters are list of dict. Note that the learning_rate in paramter groups \
            represents the scale of base learning_rate. \
J
Jiawei Wang 已提交
62 63
            The default value is None in static mode, at this time all parameters will be updated.
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
64 65 66 67 68 69
            It canbe a float value as coeff of L2 regularization or \
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
            the regularization setting here in optimizer will be ignored for this parameter. \
            Otherwise, the regularization setting here in optimizer will take effect. \
            Default None, meaning there is no regularization.
J
Jiawei Wang 已提交
70 71 72 73
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
H
huangxu96 已提交
74 75 76
        multi_precision (bool, optional): Whether to use multi-precision during weight updating. Default is false.
        rescale_grad (float, optional): Multiply the gradient with `rescale_grad` before updating. \
            Often choose to be ``1.0/batch_size``.
77
        use_multi_tensor (bool, optional): Whether to use multi-tensor strategy to update all parameters at once . Default is false.
J
Jiawei Wang 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
            linear = paddle.nn.Linear(10, 10)
            inp = paddle.to_tensor(inp)
            out = linear(inp)
            loss = paddle.mean(out)
            beta1 = paddle.to_tensor([0.9], dtype="float32")
            beta2 = paddle.to_tensor([0.99], dtype="float32")
            momentum = paddle.optimizer.Momentum(learning_rate=0.1, parameters=linear.parameters(), weight_decay=0.01)
            back = out.backward()
            momentum.step()
            momentum.clear_grad()
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            momentum = paddle.optimizer.Momentum(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1
                }],
                weight_decay=0.01,
116
                momentum=0.9)
117 118 119 120
            out.backward()
            momentum.step()
            momentum.clear_grad()

J
Jiawei Wang 已提交
121 122 123
    """
    _velocity_acc_str = "velocity"

124 125 126 127 128 129 130 131 132 133 134 135 136
    def __init__(
        self,
        learning_rate=0.001,
        momentum=0.9,
        parameters=None,
        use_nesterov=False,
        weight_decay=None,
        grad_clip=None,
        multi_precision=False,
        rescale_grad=1.0,
        use_multi_tensor=False,
        name=None,
    ):
J
Jiawei Wang 已提交
137 138 139 140
        if learning_rate is None:
            raise ValueError("learning_rate is not set")
        if momentum is None:
            raise ValueError("momentum is not set")
141

142 143 144
        predicate = lambda regular: isinstance(
            regular, (L2DecayRegularizer, float)
        )
145 146 147
        if isinstance(parameters, list):
            if isinstance(parameters[0], dict):
                for param_group in parameters:
148 149 150 151 152
                    decay = (
                        param_group['weight_decay']
                        if 'weight_decay' in param_group
                        else weight_decay
                    )
153 154 155 156 157 158
                    reg_method, reg_coeff = self._update_regularization(decay)
                    param_group['regularization_method'] = reg_method
                    param_group['regularization_coeff'] = reg_coeff
                    py_regular = None if predicate(decay) else decay
                    param_group['weight_decay'] = py_regular

H
huangxu96 已提交
159
        py_regular = None if predicate(weight_decay) else weight_decay
160 161 162 163 164 165 166
        super(Momentum, self).__init__(
            learning_rate=learning_rate,
            parameters=parameters,
            weight_decay=py_regular,
            grad_clip=grad_clip,
            name=name,
        )
J
Jiawei Wang 已提交
167 168 169
        self.type = "momentum"
        self._momentum = momentum
        self._use_nesterov = bool(use_nesterov)
170 171 172 173
        (
            self._regularization_method,
            self._regularization_coeff,
        ) = self._update_regularization(weight_decay)
H
huangxu96 已提交
174 175 176 177
        self._multi_precision = multi_precision
        self._rescale_grad = rescale_grad
        self._master_weights = {}

178 179 180 181 182 183 184
        self._default_dict = {
            'momentum': momentum,
            'use_nesterov': use_nesterov,
            'rescale_grad': rescale_grad,
            'regularization_method': self._regularization_method,
            'regularization_coeff': self._regularization_coeff,
        }
185 186 187 188 189 190
        self._use_multi_tensor = use_multi_tensor
        if self._use_multi_tensor:
            self._param_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}
            self._velocity_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}
            self._master_weight_dict = {
                'FP32_LODTensor': None,
191
                'FP16_LODTensor': [],
192 193 194
            }
            self._regularization_method_dict = {
                'FP32_LODTensor': [],
195
                'FP16_LODTensor': [],
196 197 198
            }
            self._regularization_coeff_dict = {
                'FP32_LODTensor': [],
199
                'FP16_LODTensor': [],
200
            }
201 202 203

    def _update_regularization(self, weight_decay):
        reg_method = ""
204
        reg_coeff = 0.0
205

206
        if isinstance(weight_decay, L2DecayRegularizer):
207 208
            reg_method = "l2_decay"
            reg_coeff = weight_decay._regularization_coeff
209
        if isinstance(weight_decay, float):
210 211 212
            reg_method = "l2_decay"
            reg_coeff = weight_decay
        return reg_method, reg_coeff
J
Jiawei Wang 已提交
213

H
huangxu96 已提交
214
    def _create_master_weight(self, param):
215 216 217 218 219 220 221
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
222 223 224 225 226 227 228
            var = layers.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
229
            block = self.helper.startup_program.global_block()
230 231 232 233 234 235 236 237 238
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
239
            self._master_weights[param.name] = var
H
huangxu96 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
254 255 256 257 258 259
        find_master = (
            self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
        )
        target_param = (
            self._master_weights[param.name] if find_master else param
        )
H
huangxu96 已提交
260
        target_name = target_param.name
261 262 263 264
        if (
            name not in self._accumulators
            or target_name not in self._accumulators[name]
        ):
265 266
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
267 268 269
                    name, target_name
                )
            )
H
huangxu96 已提交
270 271
        return self._accumulators[name][target_name]

J
Jiawei Wang 已提交
272
    def _create_accumulators(self, block, parameters):
273
        '''
J
Jiabin Yang 已提交
274
        if framework._non_static_mode():
275
            return
276
        '''
J
Jiawei Wang 已提交
277
        assert isinstance(block, framework.Block)
278 279 280 281

        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)

282 283 284 285 286
        for p in parameters:
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._velocity_acc_str, master_p)
                continue
287 288 289 290
            if (
                p.dtype == core.VarDesc.VarType.FP16
                and not self._multi_precision
            ):
291 292 293 294 295
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Momentum optimizer."
                )
            self._add_accumulator(self._velocity_acc_str, p)
J
Jiawei Wang 已提交
296

297
    def _create_regularization_of_grad(self, param, grad, regularization=None):
298
        """Create and add backward regularization Operators
299

300 301 302 303
        Function helper of append_regularization_ops.
        """
        # If ParamAttr is set to L2Decay, we skip doing regularization here. And then we fused
        # L2Decay with momentum which can refer to _append_optimize_op below.
304 305 306
        if hasattr(param, 'regularizer') and isinstance(
            param.regularizer, L2DecayRegularizer
        ):
307 308
            return grad
        return super(Momentum, self)._create_regularization_of_grad(
309 310
            param, grad, regularization
        )
311

J
Jiawei Wang 已提交
312 313
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
314 315
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)
J
Jiawei Wang 已提交
316

317 318 319
        velocity_acc = self._get_accumulator(
            self._velocity_acc_str, param_and_grad[0]
        )
J
Jiawei Wang 已提交
320 321
        lr = self._create_param_lr(param_and_grad)

322
        # For fusion of momentum and l2decay
323 324 325 326 327 328 329 330 331 332 333
        param = param_and_grad[0]
        regularization_method = self._regularization_method
        regularization_coeff = self._regularization_coeff
        if hasattr(param, 'regularizer'):
            # we skip param's l2decay before, so fuse it with momentum here.
            if isinstance(param.regularizer, L2DecayRegularizer):
                regularization_method = "l2_decay"
                regularization_coeff = param.regularizer._regularization_coeff
            # the param's regularization has been done before, we avoid do l2decay in momentum.
            elif param.regularizer is not None:
                regularization_method = ""
334
                regularization_coeff = 0.0
335

336 337 338 339 340 341 342 343 344
        find_master = (
            self._multi_precision
            and param_and_grad[0].dtype == core.VarDesc.VarType.FP16
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
345

346
        if _in_legacy_dygraph():
347 348
            if isinstance(param_and_grad, dict):
                self._update_regularization(param_and_grad['weight_decay'])
349
            _, _, _ = _legacy_C_ops.momentum(
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
                param_and_grad[0],
                param_and_grad[1],
                velocity_acc,
                lr,
                master_weight,
                param_and_grad[0],
                velocity_acc,
                master_weight,
                'mu',
                self._momentum,
                'use_nesterov',
                self._use_nesterov,
                'regularization_method',
                regularization_method,
                'regularization_coeff',
                regularization_coeff,
                'multi_precision',
                find_master,
            )
369
            return None
370 371 372
        if in_dygraph_mode():
            if isinstance(param_and_grad, dict):
                self._update_regularization(param_and_grad['weight_decay'])
373 374 375 376 377 378 379 380 381 382 383 384 385
            return _C_ops.momentum_(
                param_and_grad[0],
                param_and_grad[1],
                velocity_acc,
                lr,
                master_weight,
                self._momentum,
                self._use_nesterov,
                regularization_method,
                regularization_coeff,
                find_master,
                self._rescale_grad,
            )
386

H
huangxu96 已提交
387 388 389
        attrs = {
            "mu": self._momentum,
            "use_nesterov": self._use_nesterov,
390 391
            "regularization_method": regularization_method,
            "regularization_coeff": regularization_coeff,
H
huangxu96 已提交
392
            "multi_precision": find_master,
393
            "rescale_grad": self._rescale_grad,
H
huangxu96 已提交
394 395
        }

J
Jiawei Wang 已提交
396 397 398 399
        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "Velocity": [velocity_acc],
400
            "LearningRate": [lr],
J
Jiawei Wang 已提交
401 402 403 404
        }

        outputs = {
            "ParamOut": [param_and_grad[0]],
405
            "VelocityOut": [velocity_acc],
J
Jiawei Wang 已提交
406
        }
H
huangxu96 已提交
407 408 409 410 411

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

J
Jiawei Wang 已提交
412
        # create the momentum optimize op
413 414 415 416 417 418 419
        momentum_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
J
Jiawei Wang 已提交
420 421

        return momentum_op
422

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
    def _multi_tensor_init(self, target_block, parameters):
        """
        All parameters used for optimizer (such as: parameters, master_weight, velocity_acc for momentum) calculations are grouped into a python list by data type (float16, float32).
        This function will be overridden in the corresponding optimizer file.

        Args:
            target_block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        self._create_accumulators(target_block, parameters)
        for param in parameters:
            velocity_acc = self._get_accumulator(self._velocity_acc_str, param)
            regularization_method = self._regularization_method
            regularization_coeff = self._regularization_coeff
            if hasattr(param, 'regularizer'):
                # we skip param's l2decay before, so fuse it with momentum here.
                if isinstance(param.regularizer, L2DecayRegularizer):
                    regularization_method = "l2_decay"
441 442 443
                    regularization_coeff = (
                        param.regularizer._regularization_coeff
                    )
444
                elif param.regularizer is not None:
445 446 447 448 449 450 451
                    regularization_method = ""
                    regularization_coeff = 0.0
            if param.dtype == paddle.float32:
                self._param_dict['FP32_LODTensor'].append(param)
                self._velocity_dict['FP32_LODTensor'].append(velocity_acc)
                # fp32 no master weight
                self._regularization_method_dict['FP32_LODTensor'].append(
452 453
                    regularization_method
                )
454
                self._regularization_coeff_dict['FP32_LODTensor'].append(
455 456
                    regularization_coeff
                )
457 458 459 460 461
            elif param.dtype == paddle.float16:
                self._param_dict['FP16_LODTensor'].append(param)
                self._velocity_dict['FP16_LODTensor'].append(velocity_acc)
                if self._multi_precision:
                    self._master_weight_dict['FP16_LODTensor'].append(
462 463
                        self._master_weights[param.name]
                    )
464 465 466
                else:
                    self._master_weight_dict['FP16_LODTensor'] = None
                self._regularization_method_dict['FP16_LODTensor'].append(
467 468
                    regularization_method
                )
469
                self._regularization_coeff_dict['FP16_LODTensor'].append(
470 471
                    regularization_coeff
                )
472 473 474 475 476
            else:
                raise ValueError(
                    "Now multi_tensor_momentum only support fp32 and fp16 parameters and grad is LOD_TENSOR."
                )

477 478 479
    def _append_optimize_multi_tensor_op(
        self, target_block, parameters_and_grads
    ):
480
        """
481 482 483 484 485 486 487 488 489 490 491 492
        For Multi Tensor, append optimize merged_operator to block.
        """
        assert isinstance(target_block, framework.Block)

        grad_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}
        lr_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}

        if isinstance(parameters_and_grads, list):
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                if param_and_grad[0].stop_gradient is False:
493 494 495 496 497
                    if (
                        param_and_grad[0].dtype == paddle.float32
                        and param_and_grad[1].type
                        == core.VarDesc.VarType.LOD_TENSOR
                    ):
498 499 500
                        grad_dict['FP32_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP32_LODTensor'].append(lr)
501 502 503 504 505
                    elif (
                        param_and_grad[0].dtype == paddle.float16
                        and param_and_grad[1].type
                        == core.VarDesc.VarType.LOD_TENSOR
                    ):
506 507 508 509 510 511 512 513 514 515
                        grad_dict['FP16_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP16_LODTensor'].append(lr)
        else:
            for param_and_grad in parameters_and_grads['params']:
                if param_and_grad[1] is None:
                    continue
                if param_and_grad[0].stop_gradient is False:
                    param_grad_dict = dict()
                    param_grad_dict['params'] = param_and_grad
516 517 518 519 520 521 522
                    param_grad_dict.update(
                        {
                            k: v
                            for k, v in parameters_and_grads.items()
                            if k != 'params'
                        }
                    )
523
                    param_and_grad = self._update_param_group(param_grad_dict)
524 525 526 527 528
                    if (
                        param_and_grad[0].dtype == paddle.float32
                        and param_and_grad[1].type
                        == core.VarDesc.VarType.LOD_TENSOR
                    ):
529 530 531
                        grad_dict['FP32_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP32_LODTensor'].append(lr)
532 533 534 535 536
                    elif (
                        param_and_grad[0].dtype == paddle.float16
                        and param_and_grad[1].type
                        == core.VarDesc.VarType.LOD_TENSOR
                    ):
537 538 539 540 541 542 543
                        grad_dict['FP16_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP16_LODTensor'].append(lr)

        multi_tensor_list = ['FP32_LODTensor', 'FP16_LODTensor']
        for key in multi_tensor_list:
            if len(self._param_dict[key]) > 0:
544
                find_master = self._multi_precision and key == 'FP16_LODTensor'
545

J
Jiabin Yang 已提交
546
                if framework._non_static_mode():
547
                    if in_dygraph_mode():
548
                        _, _, _ = _C_ops.merged_momentum_(
549 550 551 552 553 554
                            self._param_dict[key],
                            grad_dict[key],
                            self._velocity_dict[key],
                            lr_dict[key],
                            self._master_weight_dict[key],
                            self._momentum,
555 556
                            self._use_nesterov,
                            self._regularization_method_dict[key],
557 558 559 560
                            self._regularization_coeff_dict[key],
                            find_master,
                            self._rescale_grad,
                        )
561
                    else:
562
                        _, _, _ = _legacy_C_ops.merged_momentum(
563 564 565 566
                            self._param_dict[key],
                            grad_dict[key],
                            self._velocity_dict[key],
                            lr_dict[key],
567
                            self._master_weight_dict[key],
568 569 570 571 572 573 574
                            self._param_dict[key],
                            self._velocity_dict[key],
                            self._master_weight_dict[key],
                            'mu',
                            self._momentum,
                            'use_nesterov',
                            self._use_nesterov,
575 576 577 578
                            'regularization_method',
                            self._regularization_method_dict[key],
                            'regularization_coeff',
                            self._regularization_coeff_dict[key],
579 580 581
                            'multi_precision',
                            find_master,
                        )
582 583 584 585 586 587 588 589 590 591 592 593
                else:
                    inputs = {
                        "Param": self._param_dict[key],
                        "Grad": grad_dict[key],
                        "Velocity": self._velocity_dict[key],
                        "LearningRate": lr_dict[key],
                    }
                    outputs = {
                        "ParamOut": self._param_dict[key],
                        "VelocityOut": self._velocity_dict[key],
                    }
                    attrs = {
594 595 596 597 598 599 600 601
                        "mu": self._momentum,
                        "use_nesterov": self._use_nesterov,
                        "regularization_method": self._regularization_method_dict[
                            key
                        ],
                        "regularization_coeff": self._regularization_coeff_dict[
                            key
                        ],
602
                    }
603
                    if find_master:
604 605
                        inputs["MasterParam"] = self._master_weight_dict[key]
                        outputs["MasterParamOut"] = self._master_weight_dict[
606 607
                            key
                        ]
608
                        attrs["multi_precision"] = find_master
609 610 611 612 613 614 615
                    target_block.append_op(
                        type="merged_momentum",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
616 617
        return None

618
    def _update_param_group(self, parameters):
619 620 621 622 623 624 625 626 627
        self._momentum = parameters.get(
            'momentum', self._default_dict['momentum']
        )
        self._use_nesterov = parameters.get(
            'use_nesterov', self._default_dict['use_nesterov']
        )
        self._rescale_grad = parameters.get(
            'rescale_grad', self._default_dict['rescale_grad']
        )
628
        self._regularization_method = parameters.get(
629 630
            'regularization_method', self._default_dict['regularization_method']
        )
631
        self._regularization_coeff = parameters.get(
632 633
            'regularization_coeff', self._default_dict['regularization_coeff']
        )
634 635
        parameters = parameters.get('params')
        return parameters