momentum.py 24.9 KB
Newer Older
J
Jiawei Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

J
Jiangxinz 已提交
15 16
import warnings

J
Jiawei Wang 已提交
17 18 19
from .optimizer import Optimizer
from ..fluid import core
from ..fluid import framework
20
from ..fluid.layer_helper import LayerHelper
H
huangxu96 已提交
21 22 23
from ..fluid import unique_name
from ..fluid import layers
from paddle.fluid.regularizer import L2DecayRegularizer
24
from paddle import _C_ops, _legacy_C_ops
25
import paddle
26
from paddle.fluid.framework import in_dygraph_mode, _in_legacy_dygraph
J
Jiawei Wang 已提交
27

28 29
__all__ = []

J
Jiawei Wang 已提交
30 31

class Momentum(Optimizer):
32
    r"""
J
Jiawei Wang 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

        &\quad   param = param - (gradient + mu * velocity) * learning\_rate

        & else:

        &\quad   param = param - learning\_rate * velocity

    Parameters:

        learning_rate (float|Tensor|LearningRateDecay, optional): The learning rate used to update ``Parameter``.
            It can be a float value, a ``Tensor`` with a float type or a LearningRateDecay. The default value is 0.001.
        momentum (float): Momentum factor. The default value is 0.9.
57 58 59 60 61
        parameters (list|tuple, optional): List|Tuple of ``Tensor`` to update to minimize ``loss``. \
            This parameter is required in dygraph mode. And you can specify different options for \
            different parameter groups such as the learning rate, weight decay, etc, \
            then the parameters are list of dict. Note that the learning_rate in paramter groups \
            represents the scale of base learning_rate. \
J
Jiawei Wang 已提交
62 63
            The default value is None in static mode, at this time all parameters will be updated.
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
64 65 66 67 68 69
            It canbe a float value as coeff of L2 regularization or \
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
            the regularization setting here in optimizer will be ignored for this parameter. \
            Otherwise, the regularization setting here in optimizer will take effect. \
            Default None, meaning there is no regularization.
J
Jiawei Wang 已提交
70 71 72 73
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
H
huangxu96 已提交
74 75 76
        multi_precision (bool, optional): Whether to use multi-precision during weight updating. Default is false.
        rescale_grad (float, optional): Multiply the gradient with `rescale_grad` before updating. \
            Often choose to be ``1.0/batch_size``.
77
        use_multi_tensor (bool, optional): Whether to use multi-tensor strategy to update all parameters at once . Default is false.
J
Jiawei Wang 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
            linear = paddle.nn.Linear(10, 10)
            inp = paddle.to_tensor(inp)
            out = linear(inp)
            loss = paddle.mean(out)
            beta1 = paddle.to_tensor([0.9], dtype="float32")
            beta2 = paddle.to_tensor([0.99], dtype="float32")
            momentum = paddle.optimizer.Momentum(learning_rate=0.1, parameters=linear.parameters(), weight_decay=0.01)
            back = out.backward()
            momentum.step()
            momentum.clear_grad()
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            momentum = paddle.optimizer.Momentum(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1
                }],
                weight_decay=0.01,
116
                momentum=0.9)
117 118 119 120
            out.backward()
            momentum.step()
            momentum.clear_grad()

J
Jiawei Wang 已提交
121 122 123 124 125 126 127 128 129 130
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate=0.001,
                 momentum=0.9,
                 parameters=None,
                 use_nesterov=False,
                 weight_decay=None,
                 grad_clip=None,
H
huangxu96 已提交
131 132
                 multi_precision=False,
                 rescale_grad=1.0,
133
                 use_multi_tensor=False,
J
Jiawei Wang 已提交
134 135 136 137 138
                 name=None):
        if learning_rate is None:
            raise ValueError("learning_rate is not set")
        if momentum is None:
            raise ValueError("momentum is not set")
139

140 141
        predicate = lambda regular: isinstance(regular,
                                               (L2DecayRegularizer, float))
142 143 144 145 146 147 148 149 150 151 152
        if isinstance(parameters, list):
            if isinstance(parameters[0], dict):
                for param_group in parameters:
                    decay = param_group[
                        'weight_decay'] if 'weight_decay' in param_group else weight_decay
                    reg_method, reg_coeff = self._update_regularization(decay)
                    param_group['regularization_method'] = reg_method
                    param_group['regularization_coeff'] = reg_coeff
                    py_regular = None if predicate(decay) else decay
                    param_group['weight_decay'] = py_regular

H
huangxu96 已提交
153
        py_regular = None if predicate(weight_decay) else weight_decay
154 155 156 157 158
        super(Momentum, self).__init__(learning_rate=learning_rate,
                                       parameters=parameters,
                                       weight_decay=py_regular,
                                       grad_clip=grad_clip,
                                       name=name)
J
Jiawei Wang 已提交
159 160 161
        self.type = "momentum"
        self._momentum = momentum
        self._use_nesterov = bool(use_nesterov)
162 163
        self._regularization_method, self._regularization_coeff = self._update_regularization(
            weight_decay)
H
huangxu96 已提交
164 165 166 167
        self._multi_precision = multi_precision
        self._rescale_grad = rescale_grad
        self._master_weights = {}

168 169 170 171 172 173 174
        self._default_dict = {
            'momentum': momentum,
            'use_nesterov': use_nesterov,
            'rescale_grad': rescale_grad,
            'regularization_method': self._regularization_method,
            'regularization_coeff': self._regularization_coeff,
        }
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
        self._use_multi_tensor = use_multi_tensor
        if self._use_multi_tensor:
            self._param_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}
            self._velocity_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}
            self._master_weight_dict = {
                'FP32_LODTensor': None,
                'FP16_LODTensor': []
            }
            self._regularization_method_dict = {
                'FP32_LODTensor': [],
                'FP16_LODTensor': []
            }
            self._regularization_coeff_dict = {
                'FP32_LODTensor': [],
                'FP16_LODTensor': []
            }
191 192 193

    def _update_regularization(self, weight_decay):
        reg_method = ""
194
        reg_coeff = 0.0
195 196 197 198 199 200 201 202

        if (isinstance(weight_decay, L2DecayRegularizer)):
            reg_method = "l2_decay"
            reg_coeff = weight_decay._regularization_coeff
        if (isinstance(weight_decay, float)):
            reg_method = "l2_decay"
            reg_coeff = weight_decay
        return reg_method, reg_coeff
J
Jiawei Wang 已提交
203

H
huangxu96 已提交
204
    def _create_master_weight(self, param):
205 206 207 208 209 210 211
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
212 213 214 215 216
            var = layers.create_global_var(name=var_name,
                                           shape=param.shape,
                                           value=0,
                                           dtype='float32',
                                           persistable=True)
217
            block = self.helper.startup_program.global_block()
218 219 220 221 222 223 224
            block.append_op(type="cast",
                            inputs={"X": [param]},
                            outputs={"Out": [var]},
                            attrs={
                                "in_dtype": param.dtype,
                                "out_dtype": core.VarDesc.VarType.FP32
                            })
225
            self._master_weights[param.name] = var
H
huangxu96 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
        find_master = self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
        target_param = self._master_weights[
            param.name] if find_master else param
        target_name = target_param.name
244 245 246 247 248
        if (name not in self._accumulators
                or target_name not in self._accumulators[name]):
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
                    name, target_name))
H
huangxu96 已提交
249 250
        return self._accumulators[name][target_name]

J
Jiawei Wang 已提交
251
    def _create_accumulators(self, block, parameters):
252
        '''
J
Jiabin Yang 已提交
253
        if framework._non_static_mode():
254
            return
255
        '''
J
Jiawei Wang 已提交
256
        assert isinstance(block, framework.Block)
257 258 259 260

        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)

261 262 263 264 265 266 267 268 269 270 271
        for p in parameters:
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._velocity_acc_str, master_p)
                continue
            if p.dtype == core.VarDesc.VarType.FP16 and not self._multi_precision:
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Momentum optimizer."
                )
            self._add_accumulator(self._velocity_acc_str, p)
J
Jiawei Wang 已提交
272

273 274
    def _create_regularization_of_grad(self, param, grad, regularization=None):
        """ Create and add backward regularization Operators
275

276 277 278 279 280 281 282 283 284 285
        Function helper of append_regularization_ops.
        """
        # If ParamAttr is set to L2Decay, we skip doing regularization here. And then we fused
        # L2Decay with momentum which can refer to _append_optimize_op below.
        if hasattr(param, 'regularizer') and isinstance(param.regularizer,
                                                        L2DecayRegularizer):
            return grad
        return super(Momentum, self)._create_regularization_of_grad(
            param, grad, regularization)

J
Jiawei Wang 已提交
286 287
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
288 289
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)
J
Jiawei Wang 已提交
290 291 292 293 294

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        lr = self._create_param_lr(param_and_grad)

295
        # For fusion of momentum and l2decay
296 297 298 299 300 301 302 303 304 305 306
        param = param_and_grad[0]
        regularization_method = self._regularization_method
        regularization_coeff = self._regularization_coeff
        if hasattr(param, 'regularizer'):
            # we skip param's l2decay before, so fuse it with momentum here.
            if isinstance(param.regularizer, L2DecayRegularizer):
                regularization_method = "l2_decay"
                regularization_coeff = param.regularizer._regularization_coeff
            # the param's regularization has been done before, we avoid do l2decay in momentum.
            elif param.regularizer is not None:
                regularization_method = ""
307
                regularization_coeff = 0.0
308

309 310 311 312 313
        find_master = self._multi_precision and param_and_grad[
            0].dtype == core.VarDesc.VarType.FP16
        master_weight = (self._master_weights[param_and_grad[0].name]
                         if find_master else None)

314
        if _in_legacy_dygraph():
315 316
            if isinstance(param_and_grad, dict):
                self._update_regularization(param_and_grad['weight_decay'])
317
            _, _, _ = _legacy_C_ops.momentum(
H
huangxu96 已提交
318
                param_and_grad[0], param_and_grad[1], velocity_acc, lr,
319 320 321 322 323 324
                master_weight, param_and_grad[0], velocity_acc, master_weight,
                'mu', self._momentum, 'use_nesterov', self._use_nesterov,
                'regularization_method', regularization_method,
                'regularization_coeff', regularization_coeff, 'multi_precision',
                find_master)
            return None
325 326 327
        if in_dygraph_mode():
            if isinstance(param_and_grad, dict):
                self._update_regularization(param_and_grad['weight_decay'])
328 329 330 331 332
            return _C_ops.momentum_(param_and_grad[0], param_and_grad[1],
                                    velocity_acc, lr, master_weight,
                                    self._momentum, self._use_nesterov,
                                    regularization_method, regularization_coeff,
                                    find_master, self._rescale_grad)
333

H
huangxu96 已提交
334 335 336
        attrs = {
            "mu": self._momentum,
            "use_nesterov": self._use_nesterov,
337 338
            "regularization_method": regularization_method,
            "regularization_coeff": regularization_coeff,
H
huangxu96 已提交
339 340 341 342
            "multi_precision": find_master,
            "rescale_grad": self._rescale_grad
        }

J
Jiawei Wang 已提交
343 344 345 346 347 348 349 350 351 352 353
        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "Velocity": [velocity_acc],
            "LearningRate": [lr]
        }

        outputs = {
            "ParamOut": [param_and_grad[0]],
            "VelocityOut": [velocity_acc]
        }
H
huangxu96 已提交
354 355 356 357 358

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

J
Jiawei Wang 已提交
359
        # create the momentum optimize op
360 361 362 363 364
        momentum_op = block.append_op(type=self.type,
                                      inputs=inputs,
                                      outputs=outputs,
                                      attrs=attrs,
                                      stop_gradient=True)
J
Jiawei Wang 已提交
365 366

        return momentum_op
367

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
    def _multi_tensor_init(self, target_block, parameters):
        """
        All parameters used for optimizer (such as: parameters, master_weight, velocity_acc for momentum) calculations are grouped into a python list by data type (float16, float32).
        This function will be overridden in the corresponding optimizer file.

        Args:
            target_block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        self._create_accumulators(target_block, parameters)
        for param in parameters:
            velocity_acc = self._get_accumulator(self._velocity_acc_str, param)
            regularization_method = self._regularization_method
            regularization_coeff = self._regularization_coeff
            if hasattr(param, 'regularizer'):
                # we skip param's l2decay before, so fuse it with momentum here.
                if isinstance(param.regularizer, L2DecayRegularizer):
                    regularization_method = "l2_decay"
                    regularization_coeff = param.regularizer._regularization_coeff
387
                elif param.regularizer is not None:
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
                    regularization_method = ""
                    regularization_coeff = 0.0
            if param.dtype == paddle.float32:
                self._param_dict['FP32_LODTensor'].append(param)
                self._velocity_dict['FP32_LODTensor'].append(velocity_acc)
                # fp32 no master weight
                self._regularization_method_dict['FP32_LODTensor'].append(
                    regularization_method)
                self._regularization_coeff_dict['FP32_LODTensor'].append(
                    regularization_coeff)
            elif param.dtype == paddle.float16:
                self._param_dict['FP16_LODTensor'].append(param)
                self._velocity_dict['FP16_LODTensor'].append(velocity_acc)
                if self._multi_precision:
                    self._master_weight_dict['FP16_LODTensor'].append(
                        self._master_weights[param.name])
                else:
                    self._master_weight_dict['FP16_LODTensor'] = None
                self._regularization_method_dict['FP16_LODTensor'].append(
                    regularization_method)
                self._regularization_coeff_dict['FP16_LODTensor'].append(
                    regularization_coeff)
            else:
                raise ValueError(
                    "Now multi_tensor_momentum only support fp32 and fp16 parameters and grad is LOD_TENSOR."
                )

    def _append_optimize_multi_tensor_op(self, target_block,
                                         parameters_and_grads):
417
        """
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
        For Multi Tensor, append optimize merged_operator to block.
        """
        assert isinstance(target_block, framework.Block)

        grad_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}
        lr_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}

        if isinstance(parameters_and_grads, list):
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                if param_and_grad[0].stop_gradient is False:
                    if param_and_grad[
                            0].dtype == paddle.float32 and param_and_grad[
                                1].type == core.VarDesc.VarType.LOD_TENSOR:
                        grad_dict['FP32_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP32_LODTensor'].append(lr)
                    elif param_and_grad[
                            0].dtype == paddle.float16 and param_and_grad[
                                1].type == core.VarDesc.VarType.LOD_TENSOR:
                        grad_dict['FP16_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP16_LODTensor'].append(lr)
        else:
            for param_and_grad in parameters_and_grads['params']:
                if param_and_grad[1] is None:
                    continue
                if param_and_grad[0].stop_gradient is False:
                    param_grad_dict = dict()
                    param_grad_dict['params'] = param_and_grad
                    param_grad_dict.update({
                        k: v
                        for k, v in parameters_and_grads.items()
                        if k != 'params'
                    })
                    param_and_grad = self._update_param_group(param_grad_dict)
                    if param_and_grad[
                            0].dtype == paddle.float32 and param_and_grad[
                                1].type == core.VarDesc.VarType.LOD_TENSOR:
                        grad_dict['FP32_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP32_LODTensor'].append(lr)
                    elif param_and_grad[
                            0].dtype == paddle.float16 and param_and_grad[
                                1].type == core.VarDesc.VarType.LOD_TENSOR:
                        grad_dict['FP16_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP16_LODTensor'].append(lr)

        multi_tensor_list = ['FP32_LODTensor', 'FP16_LODTensor']
        for key in multi_tensor_list:
            if len(self._param_dict[key]) > 0:
471
                find_master = self._multi_precision and key == 'FP16_LODTensor'
472

J
Jiabin Yang 已提交
473
                if framework._non_static_mode():
474
                    if in_dygraph_mode():
475
                        _, _, _ = _C_ops.merged_momentum_(
476 477 478 479 480 481 482 483
                            self._param_dict[key], grad_dict[key],
                            self._velocity_dict[key], lr_dict[key],
                            self._master_weight_dict[key], self._momentum,
                            self._use_nesterov,
                            self._regularization_method_dict[key],
                            self._regularization_coeff_dict[key], find_master,
                            self._rescale_grad)
                    else:
484
                        _, _, _ = _legacy_C_ops.merged_momentum(
485 486 487 488 489 490 491 492 493 494 495
                            self._param_dict[key], grad_dict[key],
                            self._velocity_dict[key], lr_dict[key],
                            self._master_weight_dict[key],
                            self._param_dict[key], self._velocity_dict[key],
                            self._master_weight_dict[key], 'mu', self._momentum,
                            'use_nesterov', self._use_nesterov,
                            'regularization_method',
                            self._regularization_method_dict[key],
                            'regularization_coeff',
                            self._regularization_coeff_dict[key],
                            'multi_precision', find_master)
496 497 498 499 500 501 502 503 504 505 506 507
                else:
                    inputs = {
                        "Param": self._param_dict[key],
                        "Grad": grad_dict[key],
                        "Velocity": self._velocity_dict[key],
                        "LearningRate": lr_dict[key],
                    }
                    outputs = {
                        "ParamOut": self._param_dict[key],
                        "VelocityOut": self._velocity_dict[key],
                    }
                    attrs = {
508 509 510 511
                        "mu":
                        self._momentum,
                        "use_nesterov":
                        self._use_nesterov,
512 513 514 515 516
                        "regularization_method":
                        self._regularization_method_dict[key],
                        "regularization_coeff":
                        self._regularization_coeff_dict[key],
                    }
517
                    if find_master:
518 519 520
                        inputs["MasterParam"] = self._master_weight_dict[key]
                        outputs["MasterParamOut"] = self._master_weight_dict[
                            key]
521
                        attrs["multi_precision"] = find_master
522 523 524 525 526
                    target_block.append_op(type="merged_momentum",
                                           inputs=inputs,
                                           outputs=outputs,
                                           attrs=attrs,
                                           stop_gradient=True)
527 528
        return None

529 530 531 532 533 534 535 536 537 538 539 540 541 542
    def _update_param_group(self, parameters):
        self._momentum = parameters.get('momentum',
                                        self._default_dict['momentum'])
        self._use_nesterov = parameters.get('use_nesterov',
                                            self._default_dict['use_nesterov'])
        self._rescale_grad = parameters.get('rescale_grad',
                                            self._default_dict['rescale_grad'])
        self._regularization_method = parameters.get(
            'regularization_method',
            self._default_dict['regularization_method'])
        self._regularization_coeff = parameters.get(
            'regularization_coeff', self._default_dict['regularization_coeff'])
        parameters = parameters.get('params')
        return parameters