dataloader_iter.py 33.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import time
import signal
19
import numbers
20 21 22 23 24
import logging
import itertools
import threading
import numpy as np
import multiprocessing
25
from collections import namedtuple
26 27 28 29 30
from paddle.fluid.framework import (
    _set_expected_place,
    _current_expected_place,
    set_flags,
)
31 32

# NOTE: queue has a different name in python2 and python3
T
tianshuo78520a 已提交
33
import queue
34

35
import paddle
C
chenjian 已提交
36
import paddle.profiler as profiler
37
from paddle.profiler.utils import in_profiler_mode
38
from .. import core, layers
J
Jiabin Yang 已提交
39
from ..framework import _non_static_mode, in_dygraph_mode, _in_legacy_dygraph
40 41 42 43 44
from ..multiprocess_utils import (
    _set_SIGCHLD_handler,
    MP_STATUS_CHECK_INTERVAL,
    CleanupFuncRegistrar,
)
45
from .fetcher import _IterableDatasetFetcher, _MapDatasetFetcher
46
from .batch_sampler import _InfiniteIterableSampler
47
from .collate import default_collate_fn, default_convert_fn
48 49 50 51 52 53 54 55 56
from .worker import (
    ParentWatchDog,
    get_worker_info,
    _worker_loop,
    _DatasetKind,
    _IterableDatasetStopIteration,
    _WorkerException,
    _ResumeIteration,
)
57
from .flat import _flatten_batch, _restore_batch
Z
Zhang Ting 已提交
58
from paddle.profiler.timer import benchmark
59 60

__all__ = ['get_worker_info']
61

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
# NOTE: fix `terminate called without an active exception`
# if for loop break and program exit immediately(with no model
# layers processing) after iterate **the first few data** in
# distributed lauch mode, distributed launch will call
# terminate() to kill main process on each devices, but thread
# is still iterating to fullfill blocking queue caches, which
# may cause thread error `terminate called without an active
# exception` for terminate is a strong singal and `__del__`
# of DataLoader may not be called, so we add a global link to
# the last DataLoader instance to call `__del__` to clean up
# resources
# NOTE: cannot simply as `__del__` to CleanupFuncRegistrar,
# for this will remain a link to each DataLoader instance in
# global, and will precludes GC to auto collect DataLoader
# instance and will cause memory leak
_loader = None


def _clear_loader():
    global _loader
    if _loader is not None:
        try:
            _loader.__del__()
            del _loader
        except:
            pass


CleanupFuncRegistrar.register(_clear_loader)

92

93
class _DataLoaderIterBase:
94 95 96 97 98 99 100 101 102 103 104 105 106 107
    """
    Iterator implement of DataLoader, will load and feed mini-batch
    data by setting in given dataloader.

    Args:
        loader(instance of DataLoader): instance of `fluid.io.DataLoader`
    """

    def __init__(self, loader):
        self._dataset = loader.dataset
        self._feed_list = loader.feed_list or []
        self._places = loader.places
        self._return_list = loader.return_list
        self._batch_sampler = loader.batch_sampler
108
        self._drop_last = loader.drop_last
109
        self._auto_collate_batch = loader.auto_collate_batch
110 111
        self._num_workers = loader.num_workers
        self._use_buffer_reader = loader.use_buffer_reader
112
        self._prefetch_factor = loader.prefetch_factor
113
        self._use_shared_memory = loader.use_shared_memory
114 115 116
        self._timeout = (
            loader.timeout if loader.timeout > 0 else MP_STATUS_CHECK_INTERVAL
        )
117
        self._worker_init_fn = loader.worker_init_fn
118
        self._dataset_kind = loader.dataset_kind
119
        self._pin_memory = loader.pin_memory
120

K
Kaipeng Deng 已提交
121
        self._sampler_iter = iter(self._index_sampler)
122 123 124
        if self._auto_collate_batch:
            self._collate_fn = loader.collate_fn or default_collate_fn
        else:
125
            self._collate_fn = loader.collate_fn or default_convert_fn
126

127 128 129 130 131 132 133 134 135
        # LoDTensorBlockingQueue instance for create_py_reader and a thread
        # to put mini-batch data to self._blocking_queue, mini-batch data
        # will be get from:
        # 1. multi-process mode: get data from workers' result queue
        # 2. single-process mode: read mini-batch data in main process
        self._blocking_queue = None
        self._thread = None
        self._thread_done_event = threading.Event()

K
Kaipeng Deng 已提交
136 137 138 139 140 141 142 143 144 145
    @property
    def _index_sampler(self):
        if self._auto_collate_batch:
            return self._batch_sampler
        else:
            if self._dataset_kind == _DatasetKind.MAP:
                return list(range(len(self._dataset)))
            else:
                return _InfiniteIterableSampler(self._dataset, 1)

146 147 148 149 150 151
    def __iter__(self):
        return self

    def __len__(self):
        return len(self._batch_sampler)

152 153 154 155 156 157 158 159 160 161
    def _exit_thread_expectedly(self):
        self._thread_done_event.set()
        if self._blocking_queue:
            self._blocking_queue.close()

    def _exit_thread_unexpectedly(self):
        self._thread_done_event.set()
        if self._blocking_queue:
            self._blocking_queue.kill()

162 163 164 165 166 167 168 169

class _DataLoaderIterSingleProcess(_DataLoaderIterBase):
    """
    Single process implement of DataLoaderIter, loading data from
    loader.data in main process
    """

    def __init__(self, loader):
170
        super().__init__(loader)
171

172
        self._dataset_fetcher = _DatasetKind.create_fetcher(
173 174 175 176 177 178
            self._dataset_kind,
            self._dataset,
            self._auto_collate_batch,
            self._collate_fn,
            self._drop_last,
        )
179

180 181 182 183 184 185 186 187
        # NOTE: _structrue_infos used to record the data structure of
        # batch to restore batch structure after reading Tensor
        # from blocking_queue in single-process mode. Note that
        # only single process is used in single-process mode, we
        # can record the data structure sequencely in a list without
        # recording the send and recv index
        self._structure_infos = []

188
        # NOTE: len(self._places) batch data compose as an output
189
        # iteration, set blocking_queue can cache "self._prefetch_factor" iteration datas
190
        # at most here
191
        self._blocking_queue_capacity = self._prefetch_factor * len(
192 193
            self._places
        )
194 195

        self._init_thread()
196 197 198 199
        self._shutdown = False

        global _loader
        _loader = self
200 201 202 203 204 205 206 207

    def _init_thread(self):
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
208
        # if only 1 place, do not need to keep order
209
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
210 211 212 213
            core.Variable(),
            self._blocking_queue_capacity,
            len(self._places) > 1,
        )
214
        self._reader = core.create_py_reader(
215 216 217 218 219 220 221 222 223 224 225 226 227 228
            self._blocking_queue,
            self._var_names,
            self._shapes,
            self._dtypes,
            self._need_check_feed,
            self._places,
            self._use_buffer_reader,
            True,
            self._pin_memory,
        )

        self._thread = threading.Thread(
            target=self._thread_loop, args=(_current_expected_place(),)
        )
229 230 231
        self._thread.daemon = True
        self._thread.start()

232
    def _thread_loop(self, legacy_expected_place):
233
        # NOTE(zhiqiu): Set the expected place for new thread as the same as father thread,
234 235
        # and it will call platform::SetDeviceId() in c++ internally.
        # If we do not set cudaDeviceId in new thread, the default cudaDeviceId will be 0,
236
        # Which may cost hundreds of MB of GPU memory on CUDAPlace(0) if calling some cuda
237
        # APIs in this thread.
L
Leo Chen 已提交
238
        core.set_current_thread_name("Dataloader_" + str(id(self)))
239 240 241 242 243 244 245 246
        _set_expected_place(legacy_expected_place)

        while not self._thread_done_event.is_set():
            try:
                indices = next(self._sampler_iter)

                # read data from dataset in mini-batch
                # with paddle.fluid.dygraph.guard(place=paddle.CPUPlace()):
247
                # read data from dataset in mini-batch
248 249 250
                batch = self._dataset_fetcher.fetch(
                    indices, self._thread_done_event
                )
251 252 253 254
            except StopIteration:
                self._exit_thread_expectedly()
                return

255 256
            if batch is None or self._thread_done_event.is_set():
                break
257 258 259 260

            # flat batch and record structure infos
            batch, structure = _flatten_batch(batch)
            self._structure_infos.append(structure)
261

262 263
            if self._thread_done_event.is_set():
                break
264

265
            try:
266 267 268
                # pack as LoDTensorArray
                array = core.LoDTensorArray()
                for slot in batch:
W
wanghuancoder 已提交
269
                    if isinstance(slot, (paddle.Tensor, core.eager.Tensor)):
K
Kaipeng Deng 已提交
270 271
                        slot = slot.value().get_tensor()
                    elif not isinstance(slot, core.LoDTensor):
272 273 274 275 276 277
                        tmp = core.LoDTensor()
                        tmp.set(slot, core.CPUPlace())
                        slot = tmp

                    array.append(slot)

278 279
                if self._thread_done_event.is_set():
                    break
280

281 282 283 284
                try:
                    self._blocking_queue.push(array)
                except:
                    self._exit_thread_expectedly()
285

286
            except Exception as e:
287
                self._exit_thread_unexpectedly()
288
                raise e
289 290

        self._exit_thread_expectedly()
291 292

    def __next__(self):
293 294 295
        if in_profiler_mode():
            trace_event = profiler.RecordEvent(
                name="_DataLoaderIterSingleProcess",
296 297
                event_type=profiler.TracerEventType.Dataloader,
            )
298
            trace_event.begin()
299
        try:
Z
Zhang Ting 已提交
300 301
            benchmark().check_if_need_record(self)
            benchmark().before_reader()
302
            if in_dygraph_mode():
J
Jiabin Yang 已提交
303
                data = core.eager.read_next_tensor_list(
304 305
                    self._reader.read_next_list()[0]
                )
306
                data = _restore_batch(data, self._structure_infos.pop(0))
307
            else:
J
Jiabin Yang 已提交
308 309 310 311 312 313 314 315
                if _in_legacy_dygraph():
                    data = self._reader.read_next_var_list()
                    data = _restore_batch(data, self._structure_infos.pop(0))
                else:  # in static mode
                    if self._return_list:
                        data = self._reader.read_next_list()
                        for i in range(len(data)):
                            data[i] = data[i]._move_to_list()
316 317 318
                        structs = [
                            self._structure_infos.pop(0)
                            for _ in range(len(self._places))
J
Jiabin Yang 已提交
319
                        ]
320 321 322
                        data = [
                            _restore_batch(d, s) for d, s in zip(data, structs)
                        ]
J
Jiabin Yang 已提交
323 324 325 326 327 328 329
                        # static graph organized data on multi-device with list, if
                        # place number is 1, there is only 1 device, extra the data
                        # from list for devices to be compatible with dygraph mode
                        if len(self._places) == 1:
                            data = data[0]
                    else:
                        data = self._reader.read_next()
Z
Zhang Ting 已提交
330
            benchmark().after_reader()
331 332

            return data
333
        except StopIteration:
334
            self._reader.shutdown()
335
            self._try_shutdown_all()
336
            raise
C
chenjian 已提交
337
        finally:
338 339
            if in_profiler_mode():
                trace_event.end()
340

341 342 343
    def _shutdown_thread(self):
        if self._thread:
            self._thread_done_event.set()
344 345 346 347 348 349 350 351 352 353 354
            # NOTE: we wait for _thread exit for 3 seconds, if
            #       thread not exit normally, force kill it
            for _ in range(3):
                if self._thread.is_alive():
                    time.sleep(1)
                else:
                    break
            else:
                if self._thread is not threading.current_thread():
                    self._thread.join()

355
            self._thread = None
356

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
    def _try_shutdown_all(self):
        if not self._shutdown:
            try:
                # # _blocking_queue in keep order mode holds sub-threads
                # # need to release thread resources on unexpected exit
                if self._blocking_queue:
                    self._blocking_queue.close()
                    self._blocking_queue = None
                # NOTE: blocking queue should be closed firstly for
                # blocking queue read may hang and _thread_done_event
                # cannot be checked
                self._shutdown_thread()
            finally:
                self._shutdown = True

372
    def __del__(self):
373
        self._try_shutdown_all()
374

375 376 377

class _DataLoaderIterMultiProcess(_DataLoaderIterBase):
    def __init__(self, loader):
378
        super().__init__(loader)
379

K
Kaipeng Deng 已提交
380 381 382
        self._persistent_workers = loader._persistent_workers
        self._resume_worker_cnt = 0

383 384 385 386 387
        assert (
            self._num_workers > 0
        ), "Multi-process DataLoader " "invalid num_workers({})".format(
            self._num_workers
        )
388 389 390 391 392

        # subprocess wrokers' result queue
        self._data_queue = None

        # data get from _data_queue will be reordered by _rcvd_idx
393
        # for data order keeping, data index not equal _rcvd_idx
394
        # will be cached in _task_infos
395 396 397
        self._send_idx = 0
        self._rcvd_idx = 0
        self._batches_outstanding = 0
398
        self._task_infos = {}
399
        self._structure_infos = []
400 401 402 403

        # indices outstand as _outstanding_capacity at first, and
        # blocking_queue capacity is also _outstanding_capacity.
        # _outstanding_capacity here to make sure each indices_queue
404 405
        # has at least "_prefetch_factor" indices, and outstanding batch cached
        # output data for at least "_prefetch_factor" iterations(Note that len(_places)
406
        # batches will be composed as an iteration output)
407
        self._outstanding_capacity = self._prefetch_factor * max(
408 409
            self._num_workers, len(self._places)
        )
410

411 412 413
        # see _try_put_indices
        self._thread_lock = threading.Lock()

414 415
        self._base_seed = np.random.randint(low=0, high=sys.maxsize)

416
        # init workers and indices queues and put 2 indices in each indices queue
417 418 419 420
        self._init_workers()
        for _ in range(self._outstanding_capacity):
            self._try_put_indices()

421 422 423
        self._init_thread()
        self._shutdown = False

424 425 426 427 428 429 430 431 432 433
    def _init_workers(self):
        # multiprocess worker and indice queue list initial as empty
        self._workers = []
        self._worker_status = []
        self._indices_queues = []
        self._workers_idx_cycle = itertools.cycle(range(self._num_workers))

        # create data_queue for workers
        self._data_queue = multiprocessing.Queue()

434
        # event for workers and thread, thread event is only need
435 436 437 438 439 440 441 442
        # in multi-processing mode
        self._workers_done_event = multiprocessing.Event()
        self._thread_done_event = threading.Event()

        for i in range(self._num_workers):
            indices_queue = multiprocessing.Queue()
            self._indices_queues.append(indices_queue)
            worker = multiprocessing.Process(
443
                target=_worker_loop,
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
                args=(
                    self._dataset,
                    self._dataset_kind,
                    indices_queue,
                    self._data_queue,
                    self._workers_done_event,
                    self._auto_collate_batch,
                    self._collate_fn,
                    self._drop_last,
                    self._worker_init_fn,
                    i,
                    self._num_workers,
                    self._use_shared_memory,
                    self._base_seed,
                ),
            )
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
            worker.daemon = True
            worker.start()
            self._workers.append(worker)
            self._worker_status.append(True)

        core._set_process_pids(id(self), tuple(w.pid for w in self._workers))
        _set_SIGCHLD_handler()

    def _clear_and_remove_data_queue(self):
        if self._data_queue is not None:
            while True:
                try:
                    self._data_queue.get_nowait()
                except:
                    self._data_queue.cancel_join_thread()
                    self._data_queue.close()
                    break

    def _init_thread(self):
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
485
        # if only 1 place, do not need to keep order
486
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
487 488
            core.Variable(), self._outstanding_capacity, len(self._places) > 1
        )
489
        self._reader = core.create_py_reader(
490 491 492 493 494 495 496 497 498 499
            self._blocking_queue,
            self._var_names,
            self._shapes,
            self._dtypes,
            self._need_check_feed,
            self._places,
            self._use_buffer_reader,
            True,
            self._pin_memory,
        )
500 501

        self._thread_done_event = threading.Event()
K
Kaipeng Deng 已提交
502
        # thread event is only need in multi-processing mode
503 504 505
        self._thread = threading.Thread(
            target=self._thread_loop, args=(_current_expected_place(),)
        )
506 507 508
        self._thread.daemon = True
        self._thread.start()

K
Kaipeng Deng 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
    def _reset(self):
        # resume iteration in following steps
        # 1. Resume workers, clear worker caches
        # put _ResumeIteration to all worker as resume iteration flag
        with self._thread_lock:
            self._resume_worker_cnt = self._num_workers
            for worker_id in range(self._num_workers):
                self._indices_queues[worker_id].put(_ResumeIteration())
                self._batches_outstanding += 1
        # all flag will be check in _thread_loop, simply wait here
        while self._resume_worker_cnt > 0:
            time.sleep(0.5)

        # 2. clear blocking_queue caches
        # in order not to restart the thread, we just clear
        # the blocking_queue cachees instead of recreating one
        while self._blocking_queue.size() >= len(self._places):
            if in_dygraph_mode():
J
Jiabin Yang 已提交
527
                data = core.eager.read_next_tensor_list(
528 529
                    self._reader.read_next_list()[0]
                )
K
Kaipeng Deng 已提交
530
            else:
J
Jiabin Yang 已提交
531 532 533 534 535 536
                if _in_legacy_dygraph():
                    self._reader.read_next_var_list()
                elif self._return_list:
                    self._reader.read_next_list()
                else:
                    data = self._reader.read_next()
K
Kaipeng Deng 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554

        # 3. reset all states
        self._send_idx = 0
        self._rcvd_idx = 0
        self._batches_outstanding = 0
        self._task_infos = {}
        self._structure_infos = []

        # set all worker status available
        self._worker_status = [True] * self._num_workers

        # 4. reset _sampler_iter and put prefetch indices to start next epoch
        # init workers and indices queues and put 2 indices in each indices queue
        self._sampler_iter = iter(self._index_sampler)
        for _ in range(self._outstanding_capacity):
            self._try_put_indices()

    def _shutdown_worker(self, worker_id, shutdown=False):
555 556 557
        if self._worker_status[worker_id] or (
            self._persistent_workers and shutdown
        ):
558 559 560
            self._indices_queues[worker_id].put(None)
            self._worker_status[worker_id] = False

561
    def _try_shutdown_all(self, timeout=None):
562 563 564 565 566 567 568 569 570 571
        if not self._shutdown:
            try:
                self._exit_thread_expectedly()
                self._clear_and_remove_data_queue()

                # set _workers_done_event should be set before put None
                # to indices_queue, workers wll exit on reading None from
                # indices_queue
                self._workers_done_event.set()
                for i in range(self._num_workers):
K
Kaipeng Deng 已提交
572
                    self._shutdown_worker(i, shutdown=True)
573

574 575 576 577 578 579
                if not self._shutdown:
                    for w in self._workers:
                        w.join(timeout)
                    for q in self._indices_queues:
                        q.cancel_join_thread()
                        q.close()
580 581 582 583
            finally:
                core._erase_process_pids(id(self))
                self._shutdown = True

584
    def _thread_loop(self, legacy_expected_place):
585
        # NOTE(zhiqiu): Set the expected place for new thread as the same as father thread,
586 587
        # and it will call platform::SetDeviceId() in c++ internally.
        # If we do not set cudaDeviceId in new thread, the default cudaDeviceId will be 0,
588
        # Which may cost hundreds of MB of GPU memory on CUDAPlace(0) if calling some cuda
589
        # APIs in this thread.
L
Leo Chen 已提交
590
        core.set_current_thread_name("Dataloader_" + str(id(self)))
591 592
        _set_expected_place(legacy_expected_place)

593 594 595 596 597 598
        while not self._thread_done_event.is_set():
            batch = self._get_data()
            if not self._thread_done_event.is_set():
                if batch is None:
                    self._exit_thread_expectedly()
                else:
K
Kaipeng Deng 已提交
599 600 601 602
                    if isinstance(batch, _ResumeIteration):
                        assert self._resume_worker_cnt > 0
                        self._resume_worker_cnt -= 1
                        continue
603 604 605 606 607 608 609 610 611 612
                    try:
                        # pack as LoDTensorArray
                        array = core.LoDTensorArray()
                        if self._use_shared_memory:
                            for tensor in batch:
                                array.append(tensor)
                        else:
                            # LoDTensor not in shared memory is not
                            # serializable, cannot be create in workers
                            for slot in batch:
613
                                if isinstance(
614 615
                                    slot, (paddle.Tensor, core.eager.Tensor)
                                ):
K
Kaipeng Deng 已提交
616 617
                                    slot = slot.value().get_tensor()
                                elif not isinstance(slot, core.LoDTensor):
618 619 620 621 622 623 624
                                    tmp = core.LoDTensor()
                                    tmp.set(slot, core.CPUPlace())
                                    slot = tmp
                                array.append(slot)

                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
K
Kaipeng Deng 已提交
625
                    except Exception as e:
626
                        self._exit_thread_unexpectedly()
627
                        raise e
628 629 630 631 632
                    finally:
                        self._rcvd_idx += 1

    def _get_data(self):
        while not self._thread_done_event.is_set():
633 634 635
            # For IterableDataset, batch indices is generated infinitely
            # for each worker to raise StopIteration, but a StopIteration
            # raising process will discard a batch indices which is count
636
            # in _send_idx but will not increase _rcvd_idx, so we check
637 638
            # whether the worker is still alive here to skip the discarded
            # batch indices and increase _rcvd_idx
639 640 641
            if self._dataset_kind == _DatasetKind.ITER:
                while self._rcvd_idx < self._send_idx:
                    info = self._task_infos[self._rcvd_idx]
642
                    if len(info) == 3 or self._worker_status[info[0]]:
643 644 645 646 647
                        break
                    del self._task_infos[self._rcvd_idx]
                    self._rcvd_idx += 1
                    self._batches_outstanding -= 1
                else:
648 649 650 651 652 653 654 655
                    # NOTE: when _rcvd_idx catch up _send_idx, which means
                    #       one of following:
                    #       1. all 2 * num_workers batches have been loaded
                    #          and stored in _blocking_queue
                    #       2. all data drained
                    #       we need to let _thread blocking at _data_queue
                    #       get_data to inoccupy CPU, otherwise may occupy
                    #       CPU time for model running
K
Kaipeng Deng 已提交
656 657 658 659 660 661 662 663 664
                    # NOTE: in persistent workers mode, do not check data
                    #       drained here, simply let it go to _data_queue
                    #       reading to get _ResumeIteration
                    if not self._persistent_workers:
                        # NOTE: _rcvd_idx and _send_idx only record batches among
                        #       workers, if batches among workers drained, there
                        #       may also be data in blocking queue
                        if self._batches_outstanding < len(self._places):
                            return None
665

666 667 668 669
            if (
                self._rcvd_idx in self._task_infos
                and len(self._task_infos[self._rcvd_idx]) == 3
            ):
670 671 672
                info = self._task_infos.pop(self._rcvd_idx)
                self._structure_infos.append(info[2])
                return info[1]
673

674 675 676
            try:
                # [ avoid hang ]: main process may blocking at _reader.read_next when
                # KeyboardInterrupt, we do following tradeoff:
677
                # 1. get data with timeout, MP_STATUS_CHECK_INTERVAL(5s) as timeout
678 679 680 681 682 683 684
                #    default, if KeyboardInterrupt blocking, failed workers will be
                #    checked and raise RuntimeError to quit DataLoader in timeout
                #    exception handling.
                # 2. if get data timeout and check workers all alive, continue to
                #    get data again
                data = self._data_queue.get(timeout=self._timeout)
            except Exception as e:
685 686 687 688 689
                # check if thread done event set when waiting data
                if self._thread_done_event.is_set():
                    continue

                # check failed workers
690 691 692 693 694 695 696 697
                failed_workers = []
                for i, w in enumerate(self._workers):
                    if self._worker_status[i] and not w.is_alive():
                        failed_workers.append(w)
                        self._shutdown_worker(i)
                if len(failed_workers) > 0:
                    self._exit_thread_unexpectedly()
                    pids = ', '.join(str(w.pid) for w in failed_workers)
698 699 700 701
                    raise RuntimeError(
                        "DataLoader {} workers exit unexpectedly, "
                        "pids: {}".format(len(failed_workers), pids)
                    )
702 703 704 705 706 707 708

                # get(timeout) will call _poll(timeout) and may raise IOError
                if isinstance(e, queue.Empty) or isinstance(e, IOError):
                    # continue on timeout to keep getting data from queue
                    continue

                self._exit_thread_unexpectedly()
709 710 711 712
                logging.error(
                    "DataLoader reader thread failed({}) to read data from "
                    "workers' result queue.".format(e)
                )
713
                raise e
714
            else:
715
                if self._dataset_kind == _DatasetKind.ITER and isinstance(
716 717
                    data, _IterableDatasetStopIteration
                ):
718 719 720 721 722
                    # if a worker get StopIteraion, we shutdown this worker,
                    # note that this batch indices to trigger StopIteration
                    # is discard, outstanding batch number should be decrease
                    # and another indices should be put for other workers
                    # may still working.
K
Kaipeng Deng 已提交
723 724 725 726 727
                    if self._persistent_workers:
                        self._worker_status[data.worker_id] = False
                    else:
                        self._shutdown_worker(data.worker_id)
                        self._batches_outstanding -= 1
728 729 730
                    self._try_put_indices()
                    continue

731
                idx, batch, structure = data
K
Kaipeng Deng 已提交
732

733 734 735 736 737
                if (
                    isinstance(idx, _ResumeIteration)
                    and batch is None
                    and structure is None
                ):
K
Kaipeng Deng 已提交
738 739
                    return idx

740 741 742 743
                if isinstance(batch, _WorkerException):
                    self._exit_thread_unexpectedly()
                    batch.reraise()

744
                if idx == self._rcvd_idx:
745
                    del self._task_infos[idx]
746
                    self._structure_infos.append(structure)
747 748
                    return batch
                else:
749
                    self._task_infos[idx] += (batch, structure)
750 751 752
                    continue

    def _try_put_indices(self):
753 754 755
        assert (
            self._batches_outstanding <= self._outstanding_capacity
        ), "too many indices have been put to queue"
756 757 758 759 760 761 762 763 764 765 766 767 768 769
        # In multi-process mode for IterableDataset, _try_put_indices will
        # be called both in main process(for our implement has blocking queue,
        # and blocking queue read is in main process) and thread, which may
        # cause error following error
        #   1. "ValueError: generator already executing" in next(self._sampler_iter)
        #   2. re-enter in increase _send_idx
        # add a lock for threading save, for _try_put_indices is only a slight
        # function which is not in data reading pipeline, this lock almost no
        # influence on performance
        with self._thread_lock:
            try:
                indices = next(self._sampler_iter)
            except StopIteration:
                return
770

771 772 773 774 775 776
            for i in range(self._num_workers):
                worker_idx = next(self._workers_idx_cycle)
                if self._worker_status[worker_idx]:
                    break
            else:
                return
777

778
            self._indices_queues[worker_idx].put((self._send_idx, indices))
779
            self._task_infos[self._send_idx] = (worker_idx,)
780 781
            self._batches_outstanding += 1
            self._send_idx += 1
782 783 784 785

    def __del__(self):
        self._try_shutdown_all()

786 787 788
    def _shutdown_on_exit(self):
        self._try_shutdown_all(1)

789
    def __next__(self):
790 791 792
        if in_profiler_mode():
            trace_event = profiler.RecordEvent(
                name="_DataLoaderIterMultiProcess",
793 794
                event_type=profiler.TracerEventType.Dataloader,
            )
795
            trace_event.begin()
796
        try:
Z
Zhang Ting 已提交
797 798
            benchmark().check_if_need_record(self)
            benchmark().before_reader()
799 800 801 802 803 804 805 806
            # _batches_outstanding here record the total batch data number
            # in 'from after _try_put_indices to beforeoutput data', this
            # value should be _outstanding_capacity if data is not drained,
            # if _batches_outstanding is less than _places number, there are
            # no enough data to generate next output, close blocking_queue and
            # set _thread_done_event here, py_reader will raise StopIteration,
            # end workers and indices_queues in StopIteration handling
            if self._batches_outstanding < len(self._places):
K
Kaipeng Deng 已提交
807 808 809 810 811
                if self._persistent_workers:
                    raise StopIteration
                else:
                    self._thread_done_event.set()
                    self._blocking_queue.close()
812 813

            if in_dygraph_mode():
J
Jiabin Yang 已提交
814
                data = core.eager.read_next_tensor_list(
815 816
                    self._reader.read_next_list()[0]
                )
817
                data = _restore_batch(data, self._structure_infos.pop(0))
818
            else:
J
Jiabin Yang 已提交
819 820 821
                if _in_legacy_dygraph():
                    data = self._reader.read_next_var_list()
                    data = _restore_batch(data, self._structure_infos.pop(0))
822
                else:
J
Jiabin Yang 已提交
823 824 825 826
                    if self._return_list:
                        data = self._reader.read_next_list()
                        for i in range(len(data)):
                            data[i] = data[i]._move_to_list()
827 828 829
                        structs = [
                            self._structure_infos.pop(0)
                            for _ in range(len(self._places))
J
Jiabin Yang 已提交
830
                        ]
831 832 833
                        data = [
                            _restore_batch(d, s) for d, s in zip(data, structs)
                        ]
J
Jiabin Yang 已提交
834 835 836 837 838 839 840
                        # static graph organized data on multi-device with list, if
                        # place number is 1, there is only 1 device, extra the data
                        # from list for devices to be compatible with dygraph mode
                        if len(self._places) == 1:
                            data = data[0]
                    else:
                        data = self._reader.read_next()
841
            self._on_output_batch()
Z
Zhang Ting 已提交
842
            benchmark().after_reader()
843 844
            return data
        except StopIteration:
K
Kaipeng Deng 已提交
845 846 847
            if not self._persistent_workers:
                self._reader.shutdown()
                self._try_shutdown_all()
848
            raise
C
chenjian 已提交
849
        finally:
850 851
            if in_profiler_mode():
                trace_event.end()
852 853 854 855 856

    def _on_output_batch(self):
        for _ in range(len(self._places)):
            self._batches_outstanding -= 1
            self._try_put_indices()