engine.h 27.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
18

19
#include <map>
Y
Yan Chunwei 已提交
20
#include <memory>
21
#include <mutex>  // NOLINT
22
#include <string>
Y
Yan Chunwei 已提交
23
#include <unordered_map>
24
#include <unordered_set>
25
#include <utility>
26
#include <vector>
W
wanghuancoder 已提交
27

N
nhzlx 已提交
28
#include "paddle/fluid/framework/tensor.h"
29
#include "paddle/fluid/framework/tensor_util.h"
Z
Zhaolong Xing 已提交
30
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
Y
Yan Chunwei 已提交
31 32
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
33
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
34
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
35
#include "paddle/fluid/inference/utils/singleton.h"
36
#include "paddle/fluid/platform/enforce.h"
37
#include "paddle/utils/any.h"
Y
Yan Chunwei 已提交
38 39 40 41 42

namespace paddle {
namespace inference {
namespace tensorrt {

W
wanghuancoder 已提交
43 44 45 46
namespace plugin {
class PluginTensorRT;
}  // namespace plugin

47 48 49 50 51 52 53 54 55 56 57
using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {  // NOLINT

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
      return TRT_DT::kINT32;
W
wenbin 已提交
58 59
    case FluidDT::VarType_Type_FP16:
      return TRT_DT::kHALF;
60 61 62 63 64 65 66 67 68 69
    default:
      return TRT_DT::kINT32;
  }
  PADDLE_THROW(platform::errors::InvalidArgument(
      "unknown fluid datatype in TRT op converter"));
  return TRT_DT::kINT32;
}

// The T can be int32 or int64 type.
template <typename T>
70 71
nvinfer1::Dims Vec2TRT_Dims(const std::vector<T>& shape,
                            std::string input,
72
                            bool with_dynamic_shape = false) {
73 74
  PADDLE_ENFORCE_GT(shape.size(),
                    0UL,
75
                    platform::errors::InvalidArgument(
76
                        "TensorRT's tensor input requires at least 1 "
77
                        "dimensions, but input %s has %d dims.",
78 79
                        input,
                        shape.size()));
W
wenbin 已提交
80

81 82 83 84 85 86 87 88 89 90 91 92 93
  auto ShapeStr = [](const std::vector<T>& shape) {
    std::ostringstream os;
    os << "[";
    for (size_t i = 0; i < shape.size(); ++i) {
      if (i == shape.size() - 1) {
        os << shape[i];
      } else {
        os << shape[i] << ",";
      }
    }
    os << "]";
    return os.str();
  };
94 95
  if (!with_dynamic_shape) {
    if (shape.size() == 4UL) {
96 97 98 99
      if (shape[2] == -1 || shape[3] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
100 101
            input,
            ShapeStr(shape)));
102
      }
103
      return nvinfer1::Dims3(shape[1], shape[2], shape[3]);
W
wenbin 已提交
104 105 106 107 108
    } else if (shape.size() == 5UL) {
      if (shape[2] == -1 || shape[3] == -1 || shape[4] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
109 110
            input,
            ShapeStr(shape)));
W
wenbin 已提交
111 112
      }
      return nvinfer1::Dims4(shape[1], shape[2], shape[3], shape[4]);
113
    } else if (shape.size() == 3UL) {
114 115 116 117
      if (shape[1] == -1 || shape[2] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
118 119
            input,
            ShapeStr(shape)));
120
      }
121
      return nvinfer1::Dims2(shape[1], shape[2]);
122 123 124 125 126
    } else if (shape.size() == 2UL) {
      if (shape[1] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
127 128
            input,
            ShapeStr(shape)));
129 130 131 132 133
      }
      nvinfer1::Dims dims;
      dims.nbDims = 1;
      dims.d[0] = shape[1];
      return dims;
134
    }
135
    // static shape doesn't support 1D op so far.
136 137
    PADDLE_ENFORCE_NE(shape.size(),
                      1UL,
138 139 140
                      platform::errors::InvalidArgument(
                          "The input [%s] shape of trt subgraph is %s."
                          "it's not supported by trt so far",
141 142
                          input,
                          ShapeStr(shape)));
143 144 145 146 147 148 149

    nvinfer1::Dims dims;
    dims.nbDims = shape.size() - 1;
    for (size_t i = 1; i < shape.size(); i++) {
      dims.d[i - 1] = shape[i];
    }
    return dims;
150 151
  } else {
    if (shape.size() == 4UL) {
152
      return nvinfer1::Dims4(shape[0], shape[1], shape[2], shape[3]);
153 154 155
    } else if (shape.size() == 3UL) {
      return nvinfer1::Dims3(shape[0], shape[1], shape[2]);
    }
156 157 158 159 160 161
    nvinfer1::Dims dims;
    dims.nbDims = shape.size();
    for (size_t i = 0; i < shape.size(); i++) {
      dims.d[i] = shape[i];
    }
    return dims;
162 163
  }
}
164
}  // namespace
165

N
nhzlx 已提交
166
class TRTInt8Calibrator;
W
wanghuancoder 已提交
167

Y
Yan Chunwei 已提交
168 169 170 171
/*
 * TensorRT Engine.
 *
 * There are two alternative ways to use it, one is  to build from a paddle
172
 * protobuf model, another way is to manually construct the network.
Y
Yan Chunwei 已提交
173
 */
174 175
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;
176
  using ShapeMapType = std::map<std::string, std::vector<int>>;
177

Y
Yan Chunwei 已提交
178 179 180 181
 public:
  // Weight is model parameter.
  class Weight {
   public:
182
    Weight() = default;
183
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
184 185 186 187
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
188
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
189

190 191
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
192 193 194 195
   private:
    nvinfer1::Weights w_;
  };

Z
Zhaolong Xing 已提交
196
  TensorRTEngine(
197 198
      int max_batch,
      int max_workspace,
Z
Zhaolong Xing 已提交
199
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
200 201
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
202 203 204
      const ShapeMapType min_input_shape = {},
      const ShapeMapType max_input_shape = {},
      const ShapeMapType optim_input_shape = {},
205
      bool disable_trt_plugin_fp16 = false,
Z
Zhaolong Xing 已提交
206
      nvinfer1::ILogger& logger = NaiveLogger::Global())
Y
Yan Chunwei 已提交
207 208
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
Z
Zhaolong Xing 已提交
209
        precision_(precision),
N
nhzlx 已提交
210
        calibrator_(calibrator),
N
nhzlx 已提交
211
        device_id_(device_id),
212 213 214
        min_input_shape_(min_input_shape),
        max_input_shape_(max_input_shape),
        optim_input_shape_(optim_input_shape),
215
        disable_trt_plugin_fp16_(disable_trt_plugin_fp16),
216 217 218 219
        logger_(logger) {
    if (min_input_shape_.size() != 0 && max_input_shape_.size() != 0 &&
        optim_input_shape_.size() != 0) {
      PADDLE_ENFORCE_EQ(
220 221
          min_input_shape_.size(),
          max_input_shape_.size(),
222 223 224
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of max_input_shape_",
225 226
              min_input_shape_.size(),
              max_input_shape_.size()));
227
      PADDLE_ENFORCE_EQ(
228 229
          min_input_shape_.size(),
          optim_input_shape_.size(),
230 231 232
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of optim_input_shape_",
233 234
              min_input_shape_.size(),
              optim_input_shape_.size()));
235 236 237 238 239 240 241
#if IS_TRT_VERSION_GE(6000)
      with_dynamic_shape_ = true;
#else
      LOG(WARNING) << "Using dynamic shape of TRT need ensure that the TRT "
                      "version should be at least 6.";
#endif
    }
242
    dy::initLibNvInferPlugins(&logger, "");
243
  }
Y
Yan Chunwei 已提交
244

245 246 247 248 249 250 251 252 253
  ~TensorRTEngine() {
    for (auto& attr : attrs_) {
      if (attr_dels_.find(attr.first) != attr_dels_.end()) {
        attr_dels_[attr.first]();
      }
    }
    attrs_.clear();
    attr_dels_.clear();
  }
Y
Yan Chunwei 已提交
254

255
  // Add an input and set its name, data type and dimension.
Y
Yan Chunwei 已提交
256 257 258 259 260
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
261 262
  void DeclareOutput(const nvinfer1::ILayer* layer,
                     int offset,
Y
Yan Chunwei 已提交
263
                     const std::string& name);
L
Luo Tao 已提交
264 265
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
266
  void ClearTensorMap() { itensor_map_.clear(); }
Y
Yan Chunwei 已提交
267

L
Luo Tao 已提交
268 269 270
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
  nvinfer1::ITensor* GetITensor(const std::string& name);
271
  std::unordered_map<std::string, nvinfer1::ITensor*>* GetITensorMap();
Y
Yan Chunwei 已提交
272 273

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
274 275 276 277 278 279 280 281
  nvinfer1::IExecutionContext* context() {
    std::unique_lock<std::mutex> lock(mutex_);
    const std::thread::id tid = std::this_thread::get_id();
    if (infer_context_.find(tid) == infer_context_.end()) {
      PADDLE_ENFORCE_NOT_NULL(
          infer_engine_,
          platform::errors::InvalidArgument(
              "You should build engine first and then set the context."));
W
wenbin 已提交
282 283 284
      // We may see trt warning: Profile 0 has been chosen by another
      // IExecutionContext...
      // It's ok. We will set it later.
285
      infer_context_[tid].reset(infer_engine_->createExecutionContext());
W
wenbin 已提交
286 287 288 289 290 291 292 293
      if (with_dynamic_shape_) {
        // need new profile if it's not the first
        if (cur_profile_num_ > 0) {
          infer_context_[tid]->setOptimizationProfile(cur_profile_num_);
        }
        profile_index_[tid] = cur_profile_num_;
        ++cur_profile_num_;
      }
294 295 296
    }
    return infer_context_[tid].get();
  }
W
wenbin 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

  int GetProfileIndex() {
    if (max_profile_num_ > 1) {
      std::unique_lock<std::mutex> lock(mutex_);
      const std::thread::id tid = std::this_thread::get_id();
      return profile_index_[tid];
    } else {
      return 0;
    }
  }

  int GetBindingsOffset() {
    return (binding_num_ / max_profile_num_) * GetProfileIndex();
  }

  int GetNbBindings() { return binding_num_; }

314 315 316 317 318 319 320 321 322 323
  void ResetContext() {
    std::unique_lock<std::mutex> lock(mutex_);
    const std::thread::id tid = std::this_thread::get_id();
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "You should build engine first and then set the context."));
    infer_context_[tid].reset(nullptr);
    infer_context_.erase(tid);
  }
N
nhzlx 已提交
324 325

  nvinfer1::IHostMemory* Serialize() {
326 327 328 329
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "The TensorRT engine must be built first before serialization"));
Z
zlsh80826 已提交
330
#if IS_TRT_VERSION_LT(8000)
N
nhzlx 已提交
331
    ihost_memory_.reset(infer_engine_->serialize());
Z
zlsh80826 已提交
332 333 334 335 336 337
#else
    PADDLE_ENFORCE_NOT_NULL(
        ihost_memory_,
        platform::errors::InvalidArgument(
            "TensorRT >= 8.0 requires that buildSerializedNetwork is called"));
#endif
N
nhzlx 已提交
338 339 340 341
    return ihost_memory_.get();
  }

  void Deserialize(const std::string& engine_serialized_data) {
N
nhzlx 已提交
342
    freshDeviceId();
N
nhzlx 已提交
343
    infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366

    if (use_dla_) {
      if (precision_ != AnalysisConfig::Precision::kInt8 &&
          precision_ != AnalysisConfig::Precision::kHalf) {
        LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                        "set float32, so DLA is not used.";
      } else if (runtime->getNbDLACores() == 0) {
        LOG(WARNING)
            << "TensorRT DLA is set by config, but your device does not have "
               "DLA, so DLA is not used.";
      } else {
        if (dla_core_ < 0 || dla_core_ >= runtime->getNbDLACores()) {
          dla_core_ = 0;
          LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
                       << runtime->getNbDLACores() << ", but got " << dla_core_
                       << ", so use use 0 as default.";
        }
        runtime->setDLACore(dla_core_);
        LOG(INFO) << "TensorRT DLA enabled in Deserialize(), DLACore "
                  << dla_core_;
      }
    }

367 368
    infer_engine_.reset(runtime->deserializeCudaEngine(
        engine_serialized_data.c_str(), engine_serialized_data.size()));
369

370 371 372 373 374 375 376 377
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::Fatal(
            "Building TRT cuda engine failed when deserializing engine info. "
            "Please check:\n1. Your TRT serialization is generated and loaded "
            "on the same GPU architecture;\n2. The Paddle Inference version of "
            "generating serialization file and doing inference are "
            "consistent."));
378

W
wenbin 已提交
379
    binding_num_ = infer_engine_->getNbBindings();
380
    GetEngineInfo();
N
nhzlx 已提交
381 382
  }

383 384
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
385 386 387 388 389 390 391

  bool WithFp16() {
    bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    return enable_fp16 && support_fp16;
  }

N
nhzlx 已提交
392
  int GetDeviceId() { return device_id_; }
393

394
  nvinfer1::IPluginV2Layer* AddPlugin(nvinfer1::ITensor* const* inputs,
395 396
                                      int num_inputs,
                                      plugin::PluginTensorRT*);
397 398 399 400 401

  nvinfer1::IPluginV2Layer* AddPluginV2Ext(nvinfer1::ITensor* const* inputs,
                                           int num_inputs,
                                           plugin::PluginTensorRTV2Ext* plugin);

402 403 404 405
  nvinfer1::IPluginV2Layer* AddPluginV2IOExt(nvinfer1::ITensor* const* inputs,
                                             int num_inputs,
                                             nvinfer1::IPluginV2IOExt* plugin);

406 407 408
  void SetTensorDynamicRange(nvinfer1::ITensor* tensor, float range) {
    quant_dynamic_range_[tensor] = range;
  }
409 410 411 412 413 414 415 416 417

  float GetTensorDynamicRange(nvinfer1::ITensor* tensor) {
    return quant_dynamic_range_[tensor];
  }

  bool DynamicRangeIsSet(nvinfer1::ITensor* tensor) {
    return quant_dynamic_range_.count(tensor);
  }

418 419 420
  template <typename T = float>
  T* GetWeightCPUData(const std::string& name,
                      framework::Tensor* weight_tensor);
N
nhzlx 已提交
421 422 423 424 425 426 427 428

  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
  std::unordered_map<std::string /*name*/, std::unique_ptr<framework::Tensor>>
      weight_map;
Y
Yan Chunwei 已提交
429

430 431 432 433 434 435
  // When setting weight_map, a self-increasing suffix is needed for the names
  // so as to avoid repeatedly setting weights with the same name.
  void SetWeights(std::string w_name,
                  std::unique_ptr<framework::Tensor> w_tensor) {
    static int suffix_counter = 0;
    std::string suffix = std::to_string(suffix_counter);
P
Pei Yang 已提交
436
    std::string splitter = "__";
437 438 439 440 441 442 443 444
    std::string name_with_suffix = w_name + splitter + suffix;
    PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                      0,
                      platform::errors::AlreadyExists(
                          "The weight named %s is set into the weight map "
                          "twice in TRT OP converter.",
                          name_with_suffix));
    weight_map[name_with_suffix] = std::move(w_tensor);
445 446 447
    suffix_counter += 1;
  }

448
  void SetUseOSS(bool use_varseqlen) { use_varseqlen_ = use_varseqlen; }
449 450
  void SetUseDLA(bool use_dla) { use_dla_ = use_dla; }
  void SetDLACore(int dla_core) { dla_core_ = dla_core; }
451
  void SetWithErnie(bool with_ernie) { with_ernie_ = with_ernie; }
452 453 454
  void SetWithInterleaved(bool with_interleaved) {
    with_interleaved_ = with_interleaved;
  }
455 456 457 458 459 460
  void SetTransformerPosid(std::string tensorrt_transformer_posid) {
    tensorrt_transformer_posid_ = tensorrt_transformer_posid;
  }
  void SetTransformerMaskid(std::string tensorrt_transformer_maskid) {
    tensorrt_transformer_maskid_ = tensorrt_transformer_maskid;
  }
461 462 463 464 465 466
  void ClearWeights() {
    for (auto& weight_pair : weight_map) {
      weight_pair.second.reset(nullptr);
    }
  }

467 468 469 470 471 472 473
  // NOTE: The func bellow was modified to adapt the dynamic shape.
  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork();
  // After finishing adding ops, freeze this network and creates the execution
  // environment.
  void FreezeNetwork();
474 475
  void Execute(int batch_size,
               std::vector<void*>* buffers,
476 477
               cudaStream_t stream = nullptr);

478
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
479 480 481 482

  ShapeMapType min_input_shape() { return min_input_shape_; }
  ShapeMapType max_input_shape() { return max_input_shape_; }
  ShapeMapType optim_input_shape() { return optim_input_shape_; }
483 484 485 486 487 488 489 490 491

  bool AdjustDynamicShapeRange(const ShapeMapType& runtime_input_shape,
                               std::vector<std::string>* changed) {
    bool ret = false;
    changed->clear();
    for (const auto& it : runtime_input_shape) {
      auto name = it.first;
      auto input_shape = it.second;
      PADDLE_ENFORCE_EQ(
492 493
          min_input_shape_.count(name),
          true,
494 495
          platform::errors::InvalidArgument(
              "TRT dynamic_shape min_input_shape %s not found.", name));
496 497
      PADDLE_ENFORCE_EQ(min_input_shape_[name].size(),
                        input_shape.size(),
498 499 500 501
                        platform::errors::InvalidArgument(
                            "TRT dynamic_shape min_input_shape %s size not "
                            "equal, the min_input_shape[%s].size()=%d"
                            ", but the runtime_input_shape[%s].size()=%d.",
502 503 504 505
                            name,
                            name,
                            min_input_shape_[name].size(),
                            name,
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
                            input_shape.size()));
      auto bak_min_shape = min_input_shape_[name];
      auto bak_max_shape = max_input_shape_[name];
      bool min_change = false;
      bool max_change = false;
      for (size_t d = 0; d < input_shape.size(); ++d) {
        if (input_shape[d] < min_input_shape_[name][d]) {
          ret = true;
          min_change = true;
          min_input_shape_[name][d] = input_shape[d];
        }
        if (input_shape[d] > max_input_shape_[name][d]) {
          ret = true;
          max_change = true;
          max_input_shape_[name][d] = input_shape[d];
        }
      }

      if (min_change)
        LOG(INFO) << "refactor shape range: " << name << ", min_shape from "
                  << Vec2Str(bak_min_shape) << " to "
                  << Vec2Str(min_input_shape_[name]);
      if (max_change)
        LOG(INFO) << "refactor shape range: " << name << ", max_shape from "
                  << Vec2Str(bak_max_shape) << " to "
                  << Vec2Str(max_input_shape_[name]);
      if (min_change || max_change) changed->push_back(name);
    }
    return ret;
  }

537
  bool use_varseqlen() { return use_varseqlen_; }
538
  bool with_ernie() { return with_ernie_; }
539
  bool with_interleaved() { return with_interleaved_; }
540 541 542 543 544 545
  std::string tensorrt_transformer_posid() {
    return tensorrt_transformer_posid_;
  }
  std::string tensorrt_transformer_maskid() {
    return tensorrt_transformer_maskid_;
  }
546
  bool disable_trt_plugin_fp16() { return disable_trt_plugin_fp16_; }
547
  bool with_dynamic_shape() { return with_dynamic_shape_; }
548
  AnalysisConfig::Precision precision() { return precision_; }
549

550
#if IS_TRT_VERSION_GE(6000)
551
  nvinfer1::IPluginV2Layer* AddDynamicPlugin(
552 553
      nvinfer1::ITensor* const* inputs,
      int num_inputs,
554
      plugin::DynamicPluginTensorRT* plugin) {
555 556 557 558 559
    owned_pluginv2_.emplace_back(plugin);
    return network()->addPluginV2(inputs, num_inputs, *plugin);
  }
#endif

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
  bool Has(const std::string& attr_name) const {
    return attrs_.count(attr_name) > 0;
  }

  void Erase(const std::string& attr_name) {
    if (!Has(attr_name)) {
      return;
    }
    if (attr_dels_.find(attr_name) != attr_dels_.end()) {
      attr_dels_[attr_name]();
      attr_dels_.erase(attr_name);
    }
    attrs_.erase(attr_name);
  }

  // Set a pointer to the attribute. Engine takes ownership of the attribute.
  template <typename AttrType>
  void Set(const std::string& attr_name, AttrType* attr) {
    if (attrs_.count(attr_name) == 0) {
      PADDLE_ENFORCE_EQ(
580 581
          attrs_.count(attr_name),
          0,
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
          platform::errors::AlreadyExists(
              "Attribute %s already set in trt engine.", attr_name));
    } else {
      VLOG(3) << "Setting the attribute " << attr_name << " for trt engine "
              << this;
    }
    attrs_[attr_name] = attr;
    attr_dels_[attr_name] = [attr, attr_name]() {
      VLOG(3) << "deleting " << attr_name;
      delete attr;
    };
  }

  // Set a pointer to the attribute. Engine doesn't take ownership. Caller
  // should delete the attribute.
  template <typename AttrType>
  void SetNotOwned(const std::string& attr_name, AttrType* attr) {
    PADDLE_ENFORCE_EQ(
600 601
        attrs_.count(attr_name),
        0,
602 603 604 605 606 607 608 609
        platform::errors::AlreadyExists(
            "Attribute %s already set in trt engine.", attr_name));
    attrs_[attr_name] = attr;
  }

  // Get a reference to the attributed previously set.
  template <typename AttrType>
  AttrType& Get(const std::string& attr_name) const {
610 611
    PADDLE_ENFORCE_NE(attrs_.find(attr_name),
                      attrs_.end(),
612 613 614
                      platform::errors::InvalidArgument(
                          "Attribute %s not found in trt engine.", attr_name));
    try {
615 616
      return *paddle::any_cast<AttrType*>(attrs_.at(attr_name));
    } catch (paddle::bad_any_cast&) {
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
      auto TypeToString = [](const std::type_info& info) -> std::string {
        if (std::type_index(info) == std::type_index(typeid(bool*))) {
          return "bool";
        } else if (std::type_index(info) == std::type_index(typeid(int*))) {
          return "int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(const int*))) {
          return "const int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(std::string*))) {
          return "std::string";
        }
        return info.name();
      };

      PADDLE_THROW(platform::errors::InvalidArgument(
633 634
          "Invalid type for attritube %s, expected: %s, actual: %s.",
          attr_name,
635 636 637 638 639
          TypeToString(typeid(AttrType*)),
          TypeToString(attrs_.at(attr_name).type())));
    }
  }

W
wenbin 已提交
640
  void SetProfileNum(int num) { max_profile_num_ = num; }
641 642 643 644

  void GetEngineInfo();

  void SetUseInspector(bool use_inspector) { use_inspector_ = use_inspector; }
645

Y
Yan Chunwei 已提交
646
 private:
N
nhzlx 已提交
647 648 649 650 651
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();

Y
Yan Chunwei 已提交
652 653
  // the max batch size
  int max_batch_;
654 655
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
656 657
  // the max memory size the engine uses
  int max_workspace_;
658

Z
Zhaolong Xing 已提交
659
  AnalysisConfig::Precision precision_;
N
nhzlx 已提交
660 661 662
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
663

N
nhzlx 已提交
664
  int device_id_;
W
wenbin 已提交
665 666 667
  int max_profile_num_{1};
  int cur_profile_num_{0};
  std::unordered_map<std::thread::id, int> profile_index_;
668 669 670
  ShapeMapType min_input_shape_;
  ShapeMapType max_input_shape_;
  ShapeMapType optim_input_shape_;
671
  bool disable_trt_plugin_fp16_{false};
672
  bool use_varseqlen_{false};
673 674
  bool use_dla_{false};
  int dla_core_{0};
675
  bool with_ernie_{false};
676
  bool with_interleaved_{false};
677 678
  std::string tensorrt_transformer_posid_;
  std::string tensorrt_transformer_maskid_;
Y
Yan Chunwei 已提交
679 680 681
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
L
Luo Tao 已提交
682 683
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
684

685
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
686
  std::vector<std::unique_ptr<plugin::PluginTensorRTV2Ext>> owned_plugin_v2ext_;
687
  std::vector<std::unique_ptr<nvinfer1::IPluginV2IOExt>> owned_plugin_v2ioext_;
Y
Yan Chunwei 已提交
688 689 690 691

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
692 693 694 695 696
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
697 698 699 700 701 702
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
703 704
  std::unordered_map<std::thread::id, infer_ptr<nvinfer1::IExecutionContext>>
      infer_context_;
N
nhzlx 已提交
705
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
706
  std::unordered_map<nvinfer1::ITensor*, float> quant_dynamic_range_;
707

708
  std::unordered_map<std::string, paddle::any> attrs_;
709 710
  std::unordered_map<std::string, std::function<void(void)>> attr_dels_;

711 712 713
  // For dynamic shape
  bool with_dynamic_shape_{false};
#if IS_TRT_VERSION_GE(6000)
W
wenbin 已提交
714
  int binding_num_;
715
  infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
W
wenbin 已提交
716
  std::vector<nvinfer1::IOptimizationProfile*> optim_profiles_;
717
  std::vector<std::unique_ptr<plugin::DynamicPluginTensorRT>> owned_pluginv2_;
718
#endif
719
  std::mutex mutex_;
720
  bool use_inspector_;
Y
Yan Chunwei 已提交
721 722
};  // class TensorRTEngine

723
// Add a layer__ into engine__ with args ARGS.
Y
Yan Chunwei 已提交
724 725 726 727 728 729 730 731 732
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
733
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ...) \
Z
zhoutianzi666 已提交
734
  engine__->network()->add##layer__(__VA_ARGS__)
Y
Yan Chunwei 已提交
735

736 737 738 739 740 741 742 743 744 745 746 747
class TRTEngineManager {
 public:
  bool Empty() const { return engines_.size() == 0; }
  bool Has(const std::string& name) const {
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }

  TensorRTEngine* Get(const std::string& name) const {
    return engines_.at(name).get();
  }

Z
Zhaolong Xing 已提交
748
  TensorRTEngine* Create(
749 750 751
      std::string name,
      int max_batch,
      int max_workspace,
Z
Zhaolong Xing 已提交
752
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
753 754
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
755 756 757
      const std::map<std::string, std::vector<int>> min_input_shape = {},
      const std::map<std::string, std::vector<int>> max_input_shape = {},
      const std::map<std::string, std::vector<int>> optim_input_shape = {},
758
      bool disable_trt_plugin_fp16 = false,
Z
Zhaolong Xing 已提交
759
      nvinfer1::ILogger& logger = NaiveLogger::Global()) {
760 761 762 763 764 765 766 767 768 769
    auto* p = new TensorRTEngine(max_batch,
                                 max_workspace,
                                 precision,
                                 calibrator,
                                 device_id,
                                 min_input_shape,
                                 max_input_shape,
                                 optim_input_shape,
                                 disable_trt_plugin_fp16,
                                 logger);
770 771 772 773 774 775 776 777 778 779
    engines_[name].reset(p);
    return p;
  }

  void DeleteAll() {
    for (auto& item : engines_) {
      item.second.reset(nullptr);
    }
  }

W
Wilber 已提交
780 781 782 783 784 785 786 787
  void DeleteKey(const std::string& key) {
    auto iter = engines_.find(key);
    if (iter != engines_.end()) {
      iter->second.reset(nullptr);
      engines_.erase(iter);
    }
  }

788 789 790 791
 private:
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
};

Y
Yan Chunwei 已提交
792 793 794
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle