data_set.cc 48.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *     Unless required by applicable law or agreed to in writing, software
 *     distributed under the License is distributed on an "AS IS" BASIS,
 *     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *     See the License for the specific language governing permissions and
 *     limitations under the License. */

15
#include "paddle/fluid/framework/data_set.h"
M
malin10 已提交
16

17
#include <algorithm>
D
dongdaxiang 已提交
18
#include <random>
19
#include <unordered_map>
20
#include <unordered_set>
M
malin10 已提交
21

22 23 24
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
25
#include "paddle/fluid/framework/data_feed_factory.h"
26
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
M
bug fix  
malin10 已提交
27
#include "paddle/fluid/framework/fleet/tree_wrapper.h"
28
#include "paddle/fluid/framework/io/fs.h"
H
hutuxian 已提交
29
#include "paddle/fluid/platform/monitor.h"
30
#include "paddle/fluid/platform/timer.h"
31
#include "xxhash.h"  // NOLINT
32

D
dongdaxiang 已提交
33 34 35 36 37
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

H
hutuxian 已提交
38
USE_INT_STAT(STAT_total_feasign_num_in_mem);
39 40 41
namespace paddle {
namespace framework {

X
xjqbest 已提交
42
// constructor
43
template <typename T>
D
dongdaxiang 已提交
44
DatasetImpl<T>::DatasetImpl() {
J
jiaqi 已提交
45
  VLOG(3) << "DatasetImpl<T>::DatasetImpl() constructor";
D
dongdaxiang 已提交
46
  thread_num_ = 1;
47
  trainer_num_ = 1;
J
jiaqi 已提交
48
  channel_num_ = 1;
49
  file_idx_ = 0;
H
hutuxian 已提交
50
  total_fea_num_ = 0;
J
jiaqi 已提交
51
  cur_channel_ = 0;
52 53
  fleet_send_batch_size_ = 1024;
  fleet_send_sleep_seconds_ = 0;
54
  merge_by_insid_ = false;
55 56
  merge_by_sid_ = true;
  enable_pv_merge_ = false;
57
  merge_size_ = 2;
58 59
  parse_ins_id_ = false;
  parse_content_ = false;
60
  parse_logkey_ = false;
61
  preload_thread_num_ = 0;
62
  global_index_ = 0;
D
dongdaxiang 已提交
63
}
64

X
xjqbest 已提交
65
// set filelist, file_idx_ will reset to zero.
66 67
template <typename T>
void DatasetImpl<T>::SetFileList(const std::vector<std::string>& filelist) {
68
  VLOG(3) << "filelist size: " << filelist.size();
69
  filelist_ = filelist;
70
  file_idx_ = 0;
71 72
}

X
xjqbest 已提交
73
// set expect thread num. actually it may change
74 75
template <typename T>
void DatasetImpl<T>::SetThreadNum(int thread_num) {
76
  VLOG(3) << "SetThreadNum thread_num=" << thread_num;
77 78 79
  thread_num_ = thread_num;
}

X
xjqbest 已提交
80 81 82
// if you run distributed, and want to do global shuffle,
// set this before global shuffle.
// be sure you call CreateReaders before SetTrainerNum
83
template <typename T>
X
xujiaqi01 已提交
84 85
void DatasetImpl<T>::SetTrainerNum(int trainer_num) {
  trainer_num_ = trainer_num;
86 87
}

X
xjqbest 已提交
88 89 90 91 92 93 94 95
// if you run distributed, and want to do global shuffle,
// set this before global shuffle.
// be sure you call CreateReaders before SetFleetSendBatchSize
template <typename T>
void DatasetImpl<T>::SetFleetSendBatchSize(int64_t size) {
  fleet_send_batch_size_ = size;
}

96 97 98
template <typename T>
void DatasetImpl<T>::SetHdfsConfig(const std::string& fs_name,
                                   const std::string& fs_ugi) {
X
xjqbest 已提交
99 100
  fs_name_ = fs_name;
  fs_ugi_ = fs_ugi;
101
  std::string cmd = std::string("$HADOOP_HOME/bin/hadoop fs");
102 103
  cmd += " -D fs.default.name=" + fs_name;
  cmd += " -D hadoop.job.ugi=" + fs_ugi;
104
  cmd += " -Ddfs.client.block.write.retries=15 -Ddfs.rpc.timeout=500000";
105
  paddle::framework::hdfs_set_command(cmd);
X
xujiaqi01 已提交
106
}
107

108 109 110 111 112 113 114 115 116 117
template <typename T>
void DatasetImpl<T>::SetDownloadCmd(const std::string& download_cmd) {
  paddle::framework::set_download_command(download_cmd);
}

template <typename T>
std::string DatasetImpl<T>::GetDownloadCmd() {
  return paddle::framework::download_cmd();
}

118 119
template <typename T>
void DatasetImpl<T>::SetDataFeedDesc(const std::string& data_feed_desc_str) {
120 121
  google::protobuf::TextFormat::ParseFromString(data_feed_desc_str,
                                                &data_feed_desc_);
122 123
}

124
template <typename T>
J
jiaqi 已提交
125 126 127 128
void DatasetImpl<T>::SetChannelNum(int channel_num) {
  channel_num_ = channel_num;
}

129 130 131 132 133 134 135 136 137 138
template <typename T>
void DatasetImpl<T>::SetParseInsId(bool parse_ins_id) {
  parse_ins_id_ = parse_ins_id;
}

template <typename T>
void DatasetImpl<T>::SetParseContent(bool parse_content) {
  parse_content_ = parse_content;
}

139 140 141 142 143
template <typename T>
void DatasetImpl<T>::SetParseLogKey(bool parse_logkey) {
  parse_logkey_ = parse_logkey;
}

144
template <typename T>
145
void DatasetImpl<T>::SetMergeByInsId(int merge_size) {
146
  merge_by_insid_ = true;
147
  parse_ins_id_ = true;
148
  merge_size_ = merge_size;
149 150
}

151 152 153 154 155 156 157 158 159 160
template <typename T>
void DatasetImpl<T>::SetMergeBySid(bool is_merge) {
  merge_by_sid_ = is_merge;
}

template <typename T>
void DatasetImpl<T>::SetEnablePvMerge(bool enable_pv_merge) {
  enable_pv_merge_ = enable_pv_merge;
}

161 162 163 164 165 166
template <typename T>
void DatasetImpl<T>::SetGenerateUniqueFeasign(bool gen_uni_feasigns) {
  gen_uni_feasigns_ = gen_uni_feasigns;
  VLOG(3) << "Set generate unique feasigns: " << gen_uni_feasigns;
}

167 168 169 170 171 172 173 174
template <typename T>
void DatasetImpl<T>::SetFeaEval(bool fea_eval, int record_candidate_size) {
  slots_shuffle_fea_eval_ = fea_eval;
  slots_shuffle_rclist_.ReSize(record_candidate_size);
  VLOG(3) << "SetFeaEval fea eval mode: " << fea_eval
          << " with record candidate size: " << record_candidate_size;
}

J
jiaqi 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
template <typename T>
std::vector<paddle::framework::DataFeed*> DatasetImpl<T>::GetReaders() {
  std::vector<paddle::framework::DataFeed*> ret;
  ret.reserve(readers_.size());
  for (auto i : readers_) {
    ret.push_back(i.get());
  }
  return ret;
}

template <typename T>
void DatasetImpl<T>::CreateChannel() {
  if (input_channel_ == nullptr) {
    input_channel_ = paddle::framework::MakeChannel<T>();
  }
  if (multi_output_channel_.size() == 0) {
    multi_output_channel_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_output_channel_.push_back(paddle::framework::MakeChannel<T>());
    }
  }
  if (multi_consume_channel_.size() == 0) {
    multi_consume_channel_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_consume_channel_.push_back(paddle::framework::MakeChannel<T>());
    }
  }
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
  if (input_pv_channel_ == nullptr) {
    input_pv_channel_ = paddle::framework::MakeChannel<PvInstance>();
  }
  if (multi_pv_output_.size() == 0) {
    multi_pv_output_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_pv_output_.push_back(paddle::framework::MakeChannel<PvInstance>());
    }
  }
  if (multi_pv_consume_.size() == 0) {
    multi_pv_consume_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_pv_consume_.push_back(paddle::framework::MakeChannel<PvInstance>());
    }
  }
217 218
}

219 220 221 222 223 224 225 226 227 228 229 230
// if sent message between workers, should first call this function
template <typename T>
void DatasetImpl<T>::RegisterClientToClientMsgHandler() {
  auto fleet_ptr = FleetWrapper::GetInstance();
  VLOG(3) << "RegisterClientToClientMsgHandler";
  fleet_ptr->RegisterClientToClientMsgHandler(
      0, [this](int msg_type, int client_id, const std::string& msg) -> int {
        return this->ReceiveFromClient(msg_type, client_id, msg);
      });
  VLOG(3) << "RegisterClientToClientMsgHandler done";
}

X
xjqbest 已提交
231 232
// load data into memory, Dataset hold this memory,
// which will later be fed into readers' channel
233 234 235
template <typename T>
void DatasetImpl<T>::LoadIntoMemory() {
  VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() begin";
236 237
  platform::Timer timeline;
  timeline.Start();
238 239
  std::vector<std::thread> load_threads;
  for (int64_t i = 0; i < thread_num_; ++i) {
D
dongdaxiang 已提交
240 241
    load_threads.push_back(std::thread(
        &paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get()));
242 243 244 245
  }
  for (std::thread& t : load_threads) {
    t.join();
  }
J
jiaqi 已提交
246 247 248
  input_channel_->Close();
  int64_t in_chan_size = input_channel_->Size();
  input_channel_->SetBlockSize(in_chan_size / thread_num_ + 1);
249

250 251
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() end"
J
jiaqi 已提交
252
          << ", memory data size=" << input_channel_->Size()
253
          << ", cost time=" << timeline.ElapsedSec() << " seconds";
254 255
}

J
jiaqi 已提交
256 257 258
template <typename T>
void DatasetImpl<T>::PreLoadIntoMemory() {
  VLOG(3) << "DatasetImpl<T>::PreLoadIntoMemory() begin";
259
  if (preload_thread_num_ != 0) {
260
    CHECK(static_cast<size_t>(preload_thread_num_) == preload_readers_.size());
261 262 263 264 265 266 267
    preload_threads_.clear();
    for (int64_t i = 0; i < preload_thread_num_; ++i) {
      preload_threads_.push_back(
          std::thread(&paddle::framework::DataFeed::LoadIntoMemory,
                      preload_readers_[i].get()));
    }
  } else {
268
    CHECK(static_cast<size_t>(thread_num_) == readers_.size());
269 270 271 272 273
    preload_threads_.clear();
    for (int64_t i = 0; i < thread_num_; ++i) {
      preload_threads_.push_back(std::thread(
          &paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get()));
    }
J
jiaqi 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
  }
  VLOG(3) << "DatasetImpl<T>::PreLoadIntoMemory() end";
}

template <typename T>
void DatasetImpl<T>::WaitPreLoadDone() {
  VLOG(3) << "DatasetImpl<T>::WaitPreLoadDone() begin";
  for (std::thread& t : preload_threads_) {
    t.join();
  }
  input_channel_->Close();
  int64_t in_chan_size = input_channel_->Size();
  input_channel_->SetBlockSize(in_chan_size / thread_num_ + 1);
  VLOG(3) << "DatasetImpl<T>::WaitPreLoadDone() end";
}

290 291 292 293
// release memory data
template <typename T>
void DatasetImpl<T>::ReleaseMemory() {
  VLOG(3) << "DatasetImpl<T>::ReleaseMemory() begin";
J
jiaqi 已提交
294 295 296 297 298 299 300 301 302 303
  if (input_channel_) {
    input_channel_->Clear();
    input_channel_ = nullptr;
  }
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    if (!multi_output_channel_[i]) {
      continue;
    }
    multi_output_channel_[i]->Clear();
    multi_output_channel_[i] = nullptr;
304
  }
J
jiaqi 已提交
305 306 307 308 309 310 311 312 313
  std::vector<paddle::framework::Channel<T>>().swap(multi_output_channel_);
  for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
    if (!multi_consume_channel_[i]) {
      continue;
    }
    multi_consume_channel_[i]->Clear();
    multi_consume_channel_[i] = nullptr;
  }
  std::vector<paddle::framework::Channel<T>>().swap(multi_consume_channel_);
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
  if (input_pv_channel_) {
    input_pv_channel_->Clear();
    input_pv_channel_ = nullptr;
  }
  for (size_t i = 0; i < multi_pv_output_.size(); ++i) {
    if (!multi_pv_output_[i]) {
      continue;
    }
    multi_pv_output_[i]->Clear();
    multi_pv_output_[i] = nullptr;
  }
  std::vector<paddle::framework::Channel<PvInstance>>().swap(multi_pv_output_);
  for (size_t i = 0; i < multi_pv_consume_.size(); ++i) {
    if (!multi_pv_consume_[i]) {
      continue;
    }
    multi_pv_consume_[i]->Clear();
    multi_pv_consume_[i] = nullptr;
  }
  std::vector<paddle::framework::Channel<PvInstance>>().swap(multi_pv_consume_);

J
jiaqi 已提交
335
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
336 337
  input_records_.clear();
  std::vector<T>().swap(input_records_);
H
hutuxian 已提交
338
  std::vector<T>().swap(slots_shuffle_original_data_);
339
  VLOG(3) << "DatasetImpl<T>::ReleaseMemory() end";
H
hutuxian 已提交
340 341 342 343 344
  VLOG(3) << "total_feasign_num_(" << STAT_GET(STAT_total_feasign_num_in_mem)
          << ") - current_fea_num_(" << total_fea_num_ << ") = ("
          << STAT_GET(STAT_total_feasign_num_in_mem) - total_fea_num_
          << ")";  // For Debug
  STAT_SUB(STAT_total_feasign_num_in_mem, total_fea_num_);
345 346
}

M
malin10 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
template <typename T>
void DatasetImpl<T>::InitTDMTree(
    const std::vector<std::pair<std::string, std::string>> config) {
  auto tree_ptr = TreeWrapper::GetInstance();
  for (auto& iter : config) {
    tree_ptr->insert(iter.first, iter.second);
  }
  return;
}

// do dump
template <typename T>
void DatasetImpl<T>::TDMDump(std::string name, const uint64_t table_id,
                             int fea_value_dim, const std::string tree_path) {
  auto tree_ptr = TreeWrapper::GetInstance();
M
bug fix  
malin10 已提交
362
  tree_ptr->dump(name, table_id, fea_value_dim, tree_path);
M
malin10 已提交
363 364 365 366 367
}

// do sample
template <typename T>
void DatasetImpl<T>::TDMSample(const uint16_t sample_slot,
M
bug fix  
malin10 已提交
368 369
                               const uint64_t type_slot,
                               const uint64_t start_h) {
M
malin10 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382
  VLOG(0) << "DatasetImpl<T>::Sample() begin";
  platform::Timer timeline;
  timeline.Start();

  std::vector<std::vector<T>> data;
  std::vector<std::vector<T>> sample_results;
  if (!input_channel_ || input_channel_->Size() == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      std::vector<T> tmp_data;
      data.push_back(tmp_data);
      if (!multi_output_channel_[i] || multi_output_channel_[i]->Size() == 0) {
        continue;
      }
M
bug fix  
malin10 已提交
383
      multi_output_channel_[i]->Close();
M
bug fix  
malin10 已提交
384
      multi_output_channel_[i]->ReadAll(data[i]);
M
malin10 已提交
385 386 387 388 389 390 391 392
    }
  } else {
    input_channel_->Close();
    std::vector<T> tmp_data;
    data.push_back(tmp_data);
    input_channel_->ReadAll(data[data.size() - 1]);
  }

M
bug fix  
malin10 已提交
393 394
  VLOG(1) << "finish read src data, data.size = " << data.size()
          << "; details: ";
M
malin10 已提交
395
  auto tree_ptr = TreeWrapper::GetInstance();
M
bug fix  
malin10 已提交
396
  auto fleet_ptr = FleetWrapper::GetInstance();
M
malin10 已提交
397
  for (auto i = 0; i < data.size(); i++) {
M
bug fix  
malin10 已提交
398
    VLOG(1) << "data[" << i << "]: size = " << data[i].size();
M
malin10 已提交
399
    std::vector<T> tmp_results;
M
bug fix  
malin10 已提交
400 401 402
    tree_ptr->sample(sample_slot, type_slot, &data[i], &tmp_results, start_h);
    VLOG(1) << "sample_results(" << sample_slot << ", " << type_slot
            << ") = " << tmp_results.size();
M
malin10 已提交
403 404 405
    sample_results.push_back(tmp_results);
  }

M
bug fix  
malin10 已提交
406
  auto output_channel_num = multi_output_channel_.size();
M
malin10 已提交
407 408
  for (auto i = 0; i < sample_results.size(); i++) {
    auto output_idx = fleet_ptr->LocalRandomEngine()() % output_channel_num;
M
bug fix  
malin10 已提交
409
    multi_output_channel_[output_idx]->Open();
M
bug fix  
malin10 已提交
410
    multi_output_channel_[output_idx]->Write(std::move(sample_results[i]));
M
malin10 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423
  }

  data.clear();
  sample_results.clear();
  data.shrink_to_fit();
  sample_results.shrink_to_fit();

  timeline.Pause();
  VLOG(0) << "DatasetImpl<T>::Sample() end, cost time=" << timeline.ElapsedSec()
          << " seconds";
  return;
}

X
xjqbest 已提交
424
// do local shuffle
425 426 427
template <typename T>
void DatasetImpl<T>::LocalShuffle() {
  VLOG(3) << "DatasetImpl<T>::LocalShuffle() begin";
428 429
  platform::Timer timeline;
  timeline.Start();
430

J
jiaqi 已提交
431 432 433
  if (!input_channel_ || input_channel_->Size() == 0) {
    VLOG(3) << "DatasetImpl<T>::LocalShuffle() end, no data to shuffle";
    return;
434
  }
J
jiaqi 已提交
435 436 437 438 439 440 441 442 443 444 445
  auto fleet_ptr = FleetWrapper::GetInstance();
  input_channel_->Close();
  std::vector<T> data;
  input_channel_->ReadAll(data);
  std::shuffle(data.begin(), data.end(), fleet_ptr->LocalRandomEngine());
  input_channel_->Open();
  input_channel_->Write(std::move(data));
  data.clear();
  data.shrink_to_fit();
  input_channel_->Close();

446 447 448
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::LocalShuffle() end, cost time="
          << timeline.ElapsedSec() << " seconds";
449 450
}

451
template <typename T>
452
void DatasetImpl<T>::GlobalShuffle(int thread_num) {
X
xujiaqi01 已提交
453
#ifdef PADDLE_WITH_PSLIB
454
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() begin";
455 456
  platform::Timer timeline;
  timeline.Start();
457
  auto fleet_ptr = FleetWrapper::GetInstance();
J
jiaqi 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478

  if (!input_channel_ || input_channel_->Size() == 0) {
    VLOG(3) << "DatasetImpl<T>::GlobalShuffle() end, no data to shuffle";
    return;
  }

  // local shuffle
  input_channel_->Close();
  std::vector<T> data;
  input_channel_->ReadAll(data);
  std::shuffle(data.begin(), data.end(), fleet_ptr->LocalRandomEngine());
  input_channel_->Open();
  input_channel_->Write(std::move(data));
  data.clear();
  data.shrink_to_fit();

  input_channel_->Close();
  input_channel_->SetBlockSize(fleet_send_batch_size_);
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() input_channel_ size "
          << input_channel_->Size();

479 480 481 482 483 484 485 486 487 488
  auto get_client_id = [this, fleet_ptr](const T& data) -> size_t {
    if (!this->merge_by_insid_) {
      return fleet_ptr->LocalRandomEngine()() % this->trainer_num_;
    } else {
      return XXH64(data.ins_id_.data(), data.ins_id_.length(), 0) %
             this->trainer_num_;
    }
  };

  auto global_shuffle_func = [this, get_client_id]() {
J
jiaqi 已提交
489 490 491 492 493
    auto fleet_ptr = FleetWrapper::GetInstance();
    std::vector<T> data;
    while (this->input_channel_->Read(data)) {
      std::vector<paddle::framework::BinaryArchive> ars(this->trainer_num_);
      for (auto& t : data) {
494
        auto client_id = get_client_id(t);
J
jiaqi 已提交
495 496 497 498 499 500 501 502 503
        ars[client_id] << t;
      }
      std::vector<std::future<int32_t>> total_status;
      std::vector<int> send_index(this->trainer_num_);
      for (int i = 0; i < this->trainer_num_; ++i) {
        send_index[i] = i;
      }
      std::shuffle(send_index.begin(), send_index.end(),
                   fleet_ptr->LocalRandomEngine());
504
      for (int index = 0; index < this->trainer_num_; ++index) {
J
jiaqi 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
        int i = send_index[index];
        if (ars[i].Length() == 0) {
          continue;
        }
        std::string msg(ars[i].Buffer(), ars[i].Length());
        auto ret = fleet_ptr->SendClientToClientMsg(0, i, msg);
        total_status.push_back(std::move(ret));
      }
      for (auto& t : total_status) {
        t.wait();
      }
      ars.clear();
      ars.shrink_to_fit();
      data.clear();
      data.shrink_to_fit();
520 521 522 523 524 525
      // currently we find bottleneck is server not able to handle large data
      // in time, so we can remove this sleep and set fleet_send_batch_size to
      // 1024, and set server thread to 24.
      if (fleet_send_sleep_seconds_ != 0) {
        sleep(this->fleet_send_sleep_seconds_);
      }
J
jiaqi 已提交
526 527 528
    }
  };

529
  std::vector<std::thread> global_shuffle_threads;
530 531 532 533 534
  if (thread_num == -1) {
    thread_num = thread_num_;
  }
  VLOG(3) << "start global shuffle threads, num = " << thread_num;
  for (int i = 0; i < thread_num; ++i) {
J
jiaqi 已提交
535
    global_shuffle_threads.push_back(std::thread(global_shuffle_func));
536 537 538
  }
  for (std::thread& t : global_shuffle_threads) {
    t.join();
539
  }
J
jiaqi 已提交
540 541 542
  global_shuffle_threads.clear();
  global_shuffle_threads.shrink_to_fit();
  input_channel_->Clear();
543 544 545
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() end, cost time="
          << timeline.ElapsedSec() << " seconds";
X
xujiaqi01 已提交
546
#endif
547 548
}

549
template <typename T>
H
hutuxian 已提交
550 551
void DatasetImpl<T>::DynamicAdjustChannelNum(int channel_num,
                                             bool discard_remaining_ins) {
552 553 554 555 556 557 558 559 560 561
  if (channel_num_ == channel_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustChannelNum channel_num_="
            << channel_num_ << ", channel_num_=channel_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust channel num from " << channel_num_ << " to "
          << channel_num;
  channel_num_ = channel_num;
  std::vector<paddle::framework::Channel<T>>* origin_channels = nullptr;
  std::vector<paddle::framework::Channel<T>>* other_channels = nullptr;
562 563 564 565 566
  std::vector<paddle::framework::Channel<PvInstance>>* origin_pv_channels =
      nullptr;
  std::vector<paddle::framework::Channel<PvInstance>>* other_pv_channels =
      nullptr;

567 568 569 570 571
  // find out which channel (output or consume) has data
  int cur_channel = 0;
  uint64_t output_channels_data_size = 0;
  uint64_t consume_channels_data_size = 0;
  CHECK(multi_output_channel_.size() == multi_consume_channel_.size());
572
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
573 574 575 576 577 578 579 580 581 582 583 584 585
    output_channels_data_size += multi_output_channel_[i]->Size();
    consume_channels_data_size += multi_consume_channel_[i]->Size();
  }
  if (output_channels_data_size != 0) {
    CHECK(consume_channels_data_size == 0);  // NOLINT
    cur_channel = 0;
  } else {
    CHECK(output_channels_data_size == 0);  // NOLINT
    cur_channel = 1;
  }
  if (cur_channel == 0) {
    origin_channels = &multi_output_channel_;
    other_channels = &multi_consume_channel_;
586 587
    origin_pv_channels = &multi_pv_output_;
    other_pv_channels = &multi_pv_consume_;
588 589 590
  } else {
    origin_channels = &multi_consume_channel_;
    other_channels = &multi_output_channel_;
591 592
    origin_pv_channels = &multi_pv_consume_;
    other_pv_channels = &multi_pv_output_;
593
  }
594 595 596 597
  CHECK(origin_channels != nullptr);     // NOLINT
  CHECK(other_channels != nullptr);      // NOLINT
  CHECK(origin_pv_channels != nullptr);  // NOLINT
  CHECK(other_pv_channels != nullptr);   // NOLINT
598 599 600 601 602

  paddle::framework::Channel<T> total_data_channel =
      paddle::framework::MakeChannel<T>();
  std::vector<paddle::framework::Channel<T>> new_channels;
  std::vector<paddle::framework::Channel<T>> new_other_channels;
603 604 605
  std::vector<paddle::framework::Channel<PvInstance>> new_pv_channels;
  std::vector<paddle::framework::Channel<PvInstance>> new_other_pv_channels;

606
  std::vector<T> local_vec;
607
  for (size_t i = 0; i < origin_channels->size(); ++i) {
608 609 610 611 612 613
    local_vec.clear();
    (*origin_channels)[i]->Close();
    (*origin_channels)[i]->ReadAll(local_vec);
    total_data_channel->Write(std::move(local_vec));
  }
  total_data_channel->Close();
H
hutuxian 已提交
614 615 616 617
  if (static_cast<int>(total_data_channel->Size()) >= channel_num) {
    total_data_channel->SetBlockSize(total_data_channel->Size() / channel_num +
                                     (discard_remaining_ins ? 0 : 1));
  }
H
hutuxian 已提交
618
  if (static_cast<int>(input_channel_->Size()) >= channel_num) {
H
hutuxian 已提交
619 620
    input_channel_->SetBlockSize(input_channel_->Size() / channel_num +
                                 (discard_remaining_ins ? 0 : 1));
H
hutuxian 已提交
621
  }
622 623 624 625 626 627
  if (static_cast<int>(input_pv_channel_->Size()) >= channel_num) {
    input_pv_channel_->SetBlockSize(input_pv_channel_->Size() / channel_num +
                                    (discard_remaining_ins ? 0 : 1));
    VLOG(3) << "now input_pv_channle block size is "
            << input_pv_channel_->BlockSize();
  }
628 629 630 631 632 633 634

  for (int i = 0; i < channel_num; ++i) {
    local_vec.clear();
    total_data_channel->Read(local_vec);
    new_other_channels.push_back(paddle::framework::MakeChannel<T>());
    new_channels.push_back(paddle::framework::MakeChannel<T>());
    new_channels[i]->Write(std::move(local_vec));
635 636 637
    new_other_pv_channels.push_back(
        paddle::framework::MakeChannel<PvInstance>());
    new_pv_channels.push_back(paddle::framework::MakeChannel<PvInstance>());
638 639 640 641 642 643 644 645
  }

  total_data_channel->Clear();
  origin_channels->clear();
  other_channels->clear();
  *origin_channels = new_channels;
  *other_channels = new_other_channels;

646 647 648 649 650
  origin_pv_channels->clear();
  other_pv_channels->clear();
  *origin_pv_channels = new_pv_channels;
  *other_pv_channels = new_other_pv_channels;

651 652 653 654
  new_channels.clear();
  new_other_channels.clear();
  std::vector<paddle::framework::Channel<T>>().swap(new_channels);
  std::vector<paddle::framework::Channel<T>>().swap(new_other_channels);
655 656 657 658 659 660 661

  new_pv_channels.clear();
  new_other_pv_channels.clear();
  std::vector<paddle::framework::Channel<PvInstance>>().swap(new_pv_channels);
  std::vector<paddle::framework::Channel<PvInstance>>().swap(
      new_other_pv_channels);

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
  local_vec.clear();
  std::vector<T>().swap(local_vec);
  VLOG(3) << "adjust channel num done";
}

template <typename T>
void DatasetImpl<T>::DynamicAdjustReadersNum(int thread_num) {
  if (thread_num_ == thread_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustReadersNum thread_num_="
            << thread_num_ << ", thread_num_=thread_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust readers num from " << thread_num_ << " to " << thread_num;
  thread_num_ = thread_num;
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
  CreateReaders();
  VLOG(3) << "adjust readers num done";
}

template <typename T>
void DatasetImpl<T>::SetFleetSendSleepSeconds(int seconds) {
  fleet_send_sleep_seconds_ = seconds;
}

686 687
template <typename T>
void DatasetImpl<T>::CreateReaders() {
688
  VLOG(3) << "Calling CreateReaders()";
J
jiaqi 已提交
689 690 691 692 693 694
  VLOG(3) << "thread num in Dataset: " << thread_num_;
  VLOG(3) << "Filelist size in Dataset: " << filelist_.size();
  VLOG(3) << "channel num in Dataset: " << channel_num_;
  CHECK(thread_num_ > 0) << "thread num should > 0";
  CHECK(channel_num_ > 0) << "channel num should > 0";
  CHECK(channel_num_ <= thread_num_) << "channel num should <= thread num";
695
  VLOG(3) << "readers size: " << readers_.size();
696
  if (readers_.size() != 0) {
J
jiaqi 已提交
697 698
    VLOG(3) << "readers_.size() = " << readers_.size()
            << ", will not create again";
699 700
    return;
  }
701
  VLOG(3) << "data feed class name: " << data_feed_desc_.name();
J
jiaqi 已提交
702
  int channel_idx = 0;
703
  for (int i = 0; i < thread_num_; ++i) {
704
    readers_.push_back(DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
J
jiaqi 已提交
705 706 707 708 709
    readers_[i]->Init(data_feed_desc_);
    readers_[i]->SetThreadId(i);
    readers_[i]->SetThreadNum(thread_num_);
    readers_[i]->SetFileListMutex(&mutex_for_pick_file_);
    readers_[i]->SetFileListIndex(&file_idx_);
H
hutuxian 已提交
710 711
    readers_[i]->SetFeaNumMutex(&mutex_for_fea_num_);
    readers_[i]->SetFeaNum(&total_fea_num_);
J
jiaqi 已提交
712
    readers_[i]->SetFileList(filelist_);
713 714
    readers_[i]->SetParseInsId(parse_ins_id_);
    readers_[i]->SetParseContent(parse_content_);
715 716 717 718 719 720
    readers_[i]->SetParseLogKey(parse_logkey_);
    readers_[i]->SetEnablePvMerge(enable_pv_merge_);
    // Notice: it is only valid for untest of test_paddlebox_datafeed.
    // In fact, it does not affect the train process when paddle is
    // complied with Box_Ps.
    readers_[i]->SetCurrentPhase(current_phase_);
J
jiaqi 已提交
721 722 723
    if (input_channel_ != nullptr) {
      readers_[i]->SetInputChannel(input_channel_.get());
    }
724 725 726
    if (input_pv_channel_ != nullptr) {
      readers_[i]->SetInputPvChannel(input_pv_channel_.get());
    }
727 728
    if (cur_channel_ == 0 &&
        static_cast<size_t>(channel_idx) < multi_output_channel_.size()) {
J
jiaqi 已提交
729 730
      readers_[i]->SetOutputChannel(multi_output_channel_[channel_idx].get());
      readers_[i]->SetConsumeChannel(multi_consume_channel_[channel_idx].get());
731 732
      readers_[i]->SetOutputPvChannel(multi_pv_output_[channel_idx].get());
      readers_[i]->SetConsumePvChannel(multi_pv_consume_[channel_idx].get());
733 734
    } else if (static_cast<size_t>(channel_idx) <
               multi_output_channel_.size()) {
J
jiaqi 已提交
735 736
      readers_[i]->SetOutputChannel(multi_consume_channel_[channel_idx].get());
      readers_[i]->SetConsumeChannel(multi_output_channel_[channel_idx].get());
737 738
      readers_[i]->SetOutputPvChannel(multi_pv_consume_[channel_idx].get());
      readers_[i]->SetConsumePvChannel(multi_pv_output_[channel_idx].get());
J
jiaqi 已提交
739 740 741 742 743
    }
    ++channel_idx;
    if (channel_idx >= channel_num_) {
      channel_idx = 0;
    }
744
  }
J
jiaqi 已提交
745
  VLOG(3) << "readers size: " << readers_.size();
746 747
}

748 749 750
template <typename T>
void DatasetImpl<T>::DestroyReaders() {
  VLOG(3) << "Calling DestroyReaders()";
751
  VLOG(3) << "readers size1: " << readers_.size();
752
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
753
  VLOG(3) << "readers size: " << readers_.size();
J
jiaqi 已提交
754 755
  file_idx_ = 0;
  cur_channel_ = 1 - cur_channel_;
756 757
}

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
template <typename T>
void DatasetImpl<T>::SetPreLoadThreadNum(int thread_num) {
  preload_thread_num_ = thread_num;
}

template <typename T>
void DatasetImpl<T>::CreatePreLoadReaders() {
  VLOG(3) << "Begin CreatePreLoadReaders";
  if (preload_thread_num_ == 0) {
    preload_thread_num_ = thread_num_;
  }
  CHECK(preload_thread_num_ > 0) << "thread num should > 0";
  CHECK(input_channel_ != nullptr);
  preload_readers_.clear();
  for (int i = 0; i < preload_thread_num_; ++i) {
    preload_readers_.push_back(
        DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
    preload_readers_[i]->Init(data_feed_desc_);
    preload_readers_[i]->SetThreadId(i);
    preload_readers_[i]->SetThreadNum(preload_thread_num_);
    preload_readers_[i]->SetFileListMutex(&mutex_for_pick_file_);
    preload_readers_[i]->SetFileListIndex(&file_idx_);
    preload_readers_[i]->SetFileList(filelist_);
H
hutuxian 已提交
781 782
    preload_readers_[i]->SetFeaNumMutex(&mutex_for_fea_num_);
    preload_readers_[i]->SetFeaNum(&total_fea_num_);
783
    preload_readers_[i]->SetParseInsId(parse_ins_id_);
784
    preload_readers_[i]->SetParseContent(parse_content_);
785 786
    preload_readers_[i]->SetParseLogKey(parse_logkey_);
    preload_readers_[i]->SetEnablePvMerge(enable_pv_merge_);
787 788 789
    preload_readers_[i]->SetInputChannel(input_channel_.get());
    preload_readers_[i]->SetOutputChannel(nullptr);
    preload_readers_[i]->SetConsumeChannel(nullptr);
790 791
    preload_readers_[i]->SetOutputPvChannel(nullptr);
    preload_readers_[i]->SetConsumePvChannel(nullptr);
792 793 794 795 796 797 798 799 800 801 802 803 804 805
  }
  VLOG(3) << "End CreatePreLoadReaders";
}

template <typename T>
void DatasetImpl<T>::DestroyPreLoadReaders() {
  VLOG(3) << "Begin DestroyPreLoadReaders";
  preload_readers_.clear();
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(
      preload_readers_);
  file_idx_ = 0;
  VLOG(3) << "End DestroyPreLoadReaders";
}

806 807
template <typename T>
int64_t DatasetImpl<T>::GetMemoryDataSize() {
J
jiaqi 已提交
808
  return input_channel_->Size();
809 810
}

811 812 813 814 815 816 817 818 819 820
template <typename T>
int64_t DatasetImpl<T>::GetPvDataSize() {
  if (enable_pv_merge_) {
    return input_pv_channel_->Size();
  } else {
    VLOG(0) << "It does not merge pv..";
    return 0;
  }
}

821 822 823
template <typename T>
int64_t DatasetImpl<T>::GetShuffleDataSize() {
  int64_t sum = 0;
J
jiaqi 已提交
824 825
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    sum += multi_output_channel_[i]->Size() + multi_consume_channel_[i]->Size();
826 827 828 829
  }
  return sum;
}

830 831
template <typename T>
int DatasetImpl<T>::ReceiveFromClient(int msg_type, int client_id,
D
dongdaxiang 已提交
832
                                      const std::string& msg) {
D
dongdaxiang 已提交
833
#ifdef _LINUX
834
  VLOG(3) << "ReceiveFromClient msg_type=" << msg_type
835
          << ", client_id=" << client_id << ", msg length=" << msg.length();
J
jiaqi 已提交
836 837 838 839 840 841 842 843 844 845 846 847 848 849
  if (msg.length() == 0) {
    return 0;
  }
  paddle::framework::BinaryArchive ar;
  ar.SetReadBuffer(const_cast<char*>(msg.c_str()), msg.length(), nullptr);
  if (ar.Cursor() == ar.Finish()) {
    return 0;
  }
  std::vector<T> data;
  while (ar.Cursor() < ar.Finish()) {
    data.push_back(ar.Get<T>());
  }
  CHECK(ar.Cursor() == ar.Finish());

850
  auto fleet_ptr = FleetWrapper::GetInstance();
851 852 853 854 855 856 857 858 859 860
  // not use random because it doesn't perform well here.
  // to make sure each channel get data equally, we just put data to
  // channel one by one.
  // int64_t index = fleet_ptr->LocalRandomEngine()() % channel_num_;
  int64_t index = 0;
  {
    std::unique_lock<std::mutex> lk(global_index_mutex_);
    index = global_index_++;
  }
  index = index % channel_num_;
861
  VLOG(3) << "ramdom index=" << index;
J
jiaqi 已提交
862 863 864 865
  multi_output_channel_[index]->Write(std::move(data));

  data.clear();
  data.shrink_to_fit();
D
dongdaxiang 已提交
866
#endif
867 868 869
  return 0;
}

870
// explicit instantiation
J
jiaqi 已提交
871
template class DatasetImpl<Record>;
872

873 874 875
void MultiSlotDataset::PostprocessInstance() {
  // divide pv instance, and merge to input_channel_
  if (enable_pv_merge_) {
876 877 878
    auto fleet_ptr = FleetWrapper::GetInstance();
    std::shuffle(input_records_.begin(), input_records_.end(),
                 fleet_ptr->LocalRandomEngine());
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
    input_channel_->Open();
    input_channel_->Write(std::move(input_records_));
    for (size_t i = 0; i < multi_pv_consume_.size(); ++i) {
      multi_pv_consume_[i]->Clear();
    }
    input_channel_->Close();
    input_records_.clear();
    input_records_.shrink_to_fit();
  } else {
    input_channel_->Open();
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      std::vector<Record> ins_data;
      multi_consume_channel_[i]->Close();
      multi_consume_channel_[i]->ReadAll(ins_data);
      input_channel_->Write(std::move(ins_data));
      ins_data.clear();
      ins_data.shrink_to_fit();
      multi_consume_channel_[i]->Clear();
    }
    input_channel_->Close();
899
    this->LocalShuffle();
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
  }
}

void MultiSlotDataset::SetCurrentPhase(int current_phase) {
  current_phase_ = current_phase;
}

void MultiSlotDataset::PreprocessInstance() {
  if (!input_channel_ || input_channel_->Size() == 0) {
    return;
  }
  if (!enable_pv_merge_) {  // means to use Record
    this->LocalShuffle();
  } else {  // means to use Pv
    auto fleet_ptr = FleetWrapper::GetInstance();
    input_channel_->Close();
    std::vector<PvInstance> pv_data;
    input_channel_->ReadAll(input_records_);
    int all_records_num = input_records_.size();
    std::vector<Record*> all_records;
    all_records.reserve(all_records_num);
    for (int index = 0; index < all_records_num; ++index) {
      all_records.push_back(&input_records_[index]);
    }

    std::sort(all_records.data(), all_records.data() + all_records_num,
              [](const Record* lhs, const Record* rhs) {
                return lhs->search_id < rhs->search_id;
              });
    if (merge_by_sid_) {
      uint64_t last_search_id = 0;
      for (int i = 0; i < all_records_num; ++i) {
        Record* ins = all_records[i];
        if (i == 0 || last_search_id != ins->search_id) {
          PvInstance pv_instance = make_pv_instance();
          pv_instance->merge_instance(ins);
          pv_data.push_back(pv_instance);
          last_search_id = ins->search_id;
          continue;
        }
        pv_data.back()->merge_instance(ins);
      }
    } else {
      for (int i = 0; i < all_records_num; ++i) {
        Record* ins = all_records[i];
        PvInstance pv_instance = make_pv_instance();
        pv_instance->merge_instance(ins);
        pv_data.push_back(pv_instance);
      }
    }

    std::shuffle(pv_data.begin(), pv_data.end(),
                 fleet_ptr->LocalRandomEngine());
    input_pv_channel_->Open();
    input_pv_channel_->Write(std::move(pv_data));

    pv_data.clear();
    pv_data.shrink_to_fit();
    input_pv_channel_->Close();
  }
}

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
void MultiSlotDataset::GenerateLocalTablesUnlock(int table_id, int feadim,
                                                 int read_thread_num,
                                                 int consume_thread_num,
                                                 int shard_num) {
  VLOG(3) << "MultiSlotDataset::GenerateUniqueFeasign begin";
  if (!gen_uni_feasigns_) {
    VLOG(3) << "generate_unique_feasign_=false, will not GenerateUniqueFeasign";
    return;
  }

  CHECK(multi_output_channel_.size() != 0);  // NOLINT
  auto fleet_ptr_ = FleetWrapper::GetInstance();
  std::vector<std::unordered_map<uint64_t, std::vector<float>>>&
      local_map_tables = fleet_ptr_->GetLocalTable();
  local_map_tables.resize(shard_num);
  // read thread
  int channel_num = multi_output_channel_.size();
  if (read_thread_num < channel_num) {
    read_thread_num = channel_num;
  }
  std::vector<std::thread> threads(read_thread_num);
  consume_task_pool_.resize(consume_thread_num);
  for (size_t i = 0; i < consume_task_pool_.size(); i++) {
    consume_task_pool_[i].reset(new ::ThreadPool(1));
  }
  auto consume_func = [&local_map_tables](int shard_id, int feadim,
                                          std::vector<uint64_t>& keys) {
    for (auto k : keys) {
      if (local_map_tables[shard_id].find(k) ==
          local_map_tables[shard_id].end()) {
        local_map_tables[shard_id][k] = std::vector<float>(feadim, 0);
      }
    }
  };
  auto gen_func = [this, &shard_num, &feadim, &local_map_tables,
                   &consume_func](int i) {
    std::vector<Record> vec_data;
    std::vector<std::vector<uint64_t>> task_keys(shard_num);
    std::vector<std::future<void>> task_futures;
    this->multi_output_channel_[i]->Close();
    this->multi_output_channel_[i]->ReadAll(vec_data);
    for (size_t j = 0; j < vec_data.size(); j++) {
      for (auto& feature : vec_data[j].uint64_feasigns_) {
        int shard = feature.sign().uint64_feasign_ % shard_num;
        task_keys[shard].push_back(feature.sign().uint64_feasign_);
      }
    }

    for (int shard_id = 0; shard_id < shard_num; shard_id++) {
      task_futures.emplace_back(consume_task_pool_[shard_id]->enqueue(
          consume_func, shard_id, feadim, task_keys[shard_id]));
    }

    multi_output_channel_[i]->Open();
    multi_output_channel_[i]->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
    for (auto& tk : task_keys) {
      tk.clear();
      std::vector<uint64_t>().swap(tk);
    }
    task_keys.clear();
    std::vector<std::vector<uint64_t>>().swap(task_keys);
    for (auto& tf : task_futures) {
      tf.wait();
    }
  };
  for (size_t i = 0; i < threads.size(); i++) {
    threads[i] = std::thread(gen_func, i);
  }
  for (std::thread& t : threads) {
    t.join();
  }
  for (size_t i = 0; i < consume_task_pool_.size(); i++) {
    consume_task_pool_[i].reset();
  }
  consume_task_pool_.clear();
  fleet_ptr_->PullSparseToLocal(table_id, feadim);
}
1041

1042 1043 1044 1045 1046 1047 1048 1049
void MultiSlotDataset::MergeByInsId() {
  VLOG(3) << "MultiSlotDataset::MergeByInsId begin";
  if (!merge_by_insid_) {
    VLOG(3) << "merge_by_insid=false, will not MergeByInsId";
    return;
  }
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  std::vector<std::string> use_slots;
1050
  std::vector<bool> use_slots_is_dense;
1051
  for (int i = 0; i < multi_slot_desc.slots_size(); ++i) {
1052 1053 1054
    const auto& slot = multi_slot_desc.slots(i);
    if (slot.is_used()) {
      use_slots.push_back(slot.name());
1055
      use_slots_is_dense.push_back(slot.is_dense());
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
    }
  }
  CHECK(multi_output_channel_.size() != 0);  // NOLINT
  auto channel_data = paddle::framework::MakeChannel<Record>();
  VLOG(3) << "multi_output_channel_.size() " << multi_output_channel_.size();
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    std::vector<Record> vec_data;
    multi_output_channel_[i]->Close();
    multi_output_channel_[i]->ReadAll(vec_data);
    channel_data->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
    multi_output_channel_[i]->Clear();
  }
  channel_data->Close();
  std::vector<Record> recs;
  recs.reserve(channel_data->Size());
  channel_data->ReadAll(recs);
  channel_data->Clear();
  std::sort(recs.begin(), recs.end(), [](const Record& a, const Record& b) {
    return a.ins_id_ < b.ins_id_;
  });

  std::vector<Record> results;
1080 1081 1082 1083 1084
  uint64_t drop_ins_num = 0;
  std::unordered_set<uint16_t> all_int64;
  std::unordered_set<uint16_t> all_float;
  std::unordered_set<uint16_t> local_uint64;
  std::unordered_set<uint16_t> local_float;
1085 1086 1087 1088 1089
  std::unordered_map<uint16_t, std::vector<FeatureItem>> all_dense_uint64;
  std::unordered_map<uint16_t, std::vector<FeatureItem>> all_dense_float;
  std::unordered_map<uint16_t, std::vector<FeatureItem>> local_dense_uint64;
  std::unordered_map<uint16_t, std::vector<FeatureItem>> local_dense_float;
  std::unordered_map<uint16_t, bool> dense_empty;
1090

1091 1092 1093 1094 1095 1096
  VLOG(3) << "recs.size() " << recs.size();
  for (size_t i = 0; i < recs.size();) {
    size_t j = i + 1;
    while (j < recs.size() && recs[j].ins_id_ == recs[i].ins_id_) {
      j++;
    }
1097 1098 1099 1100
    if (merge_size_ > 0 && j - i != merge_size_) {
      drop_ins_num += j - i;
      LOG(WARNING) << "drop ins " << recs[i].ins_id_ << " size=" << j - i
                   << ", because merge_size=" << merge_size_;
1101 1102 1103 1104
      i = j;
      continue;
    }

1105 1106
    all_int64.clear();
    all_float.clear();
1107 1108
    all_dense_uint64.clear();
    all_dense_float.clear();
1109 1110 1111 1112 1113 1114
    bool has_conflict_slot = false;
    uint16_t conflict_slot = 0;

    Record rec;
    rec.ins_id_ = recs[i].ins_id_;
    rec.content_ = recs[i].content_;
1115

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
    for (size_t k = i; k < j; k++) {
      dense_empty.clear();
      local_dense_uint64.clear();
      local_dense_float.clear();
      for (auto& feature : recs[k].uint64_feasigns_) {
        uint16_t slot = feature.slot();
        if (!use_slots_is_dense[slot]) {
          continue;
        }
        local_dense_uint64[slot].push_back(feature);
        if (feature.sign().uint64_feasign_ != 0) {
          dense_empty[slot] = false;
        } else if (dense_empty.find(slot) == dense_empty.end() &&
                   all_dense_uint64.find(slot) == all_dense_uint64.end()) {
          dense_empty[slot] = true;
        }
      }
      for (auto& feature : recs[k].float_feasigns_) {
        uint16_t slot = feature.slot();
        if (!use_slots_is_dense[slot]) {
          continue;
        }
        local_dense_float[slot].push_back(feature);
        if (fabs(feature.sign().float_feasign_) >= 1e-6) {
          dense_empty[slot] = false;
        } else if (dense_empty.find(slot) == dense_empty.end() &&
                   all_dense_float.find(slot) == all_dense_float.end()) {
          dense_empty[slot] = true;
        }
      }
      for (auto& p : dense_empty) {
        if (local_dense_uint64.find(p.first) != local_dense_uint64.end()) {
          all_dense_uint64[p.first] = std::move(local_dense_uint64[p.first]);
        } else if (local_dense_float.find(p.first) != local_dense_float.end()) {
          all_dense_float[p.first] = std::move(local_dense_float[p.first]);
        }
      }
    }
    for (auto& f : all_dense_uint64) {
      rec.uint64_feasigns_.insert(rec.uint64_feasigns_.end(), f.second.begin(),
                                  f.second.end());
    }
    for (auto& f : all_dense_float) {
      rec.float_feasigns_.insert(rec.float_feasigns_.end(), f.second.begin(),
                                 f.second.end());
    }

1163 1164 1165
    for (size_t k = i; k < j; k++) {
      local_uint64.clear();
      local_float.clear();
1166
      for (auto& feature : recs[k].uint64_feasigns_) {
1167
        uint16_t slot = feature.slot();
1168 1169 1170
        if (use_slots_is_dense[slot]) {
          continue;
        } else if (all_int64.find(slot) != all_int64.end()) {
1171 1172 1173
          has_conflict_slot = true;
          conflict_slot = slot;
          break;
1174
        }
1175 1176 1177 1178 1179
        local_uint64.insert(slot);
        rec.uint64_feasigns_.push_back(std::move(feature));
      }
      if (has_conflict_slot) {
        break;
1180
      }
1181 1182
      all_int64.insert(local_uint64.begin(), local_uint64.end());

1183
      for (auto& feature : recs[k].float_feasigns_) {
1184
        uint16_t slot = feature.slot();
1185 1186 1187
        if (use_slots_is_dense[slot]) {
          continue;
        } else if (all_float.find(slot) != all_float.end()) {
1188 1189 1190
          has_conflict_slot = true;
          conflict_slot = slot;
          break;
1191
        }
1192 1193 1194 1195 1196
        local_float.insert(slot);
        rec.float_feasigns_.push_back(std::move(feature));
      }
      if (has_conflict_slot) {
        break;
1197
      }
1198
      all_float.insert(local_float.begin(), local_float.end());
1199 1200
    }

1201 1202 1203 1204
    if (has_conflict_slot) {
      LOG(WARNING) << "drop ins " << recs[i].ins_id_ << " size=" << j - i
                   << ", because conflict_slot=" << use_slots[conflict_slot];
      drop_ins_num += j - i;
1205
    } else {
1206
      results.push_back(std::move(rec));
1207
    }
1208
    i = j;
1209
  }
1210
  std::vector<Record>().swap(recs);
1211
  VLOG(3) << "results size " << results.size();
1212
  LOG(WARNING) << "total drop ins num: " << drop_ins_num;
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
  results.shrink_to_fit();

  auto fleet_ptr = FleetWrapper::GetInstance();
  std::shuffle(results.begin(), results.end(), fleet_ptr->LocalRandomEngine());
  channel_data->Open();
  channel_data->Write(std::move(results));
  channel_data->Close();
  results.clear();
  results.shrink_to_fit();
  VLOG(3) << "channel data size " << channel_data->Size();
  channel_data->SetBlockSize(channel_data->Size() / channel_num_ + 1);
  VLOG(3) << "channel data block size " << channel_data->BlockSize();
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    std::vector<Record> vec_data;
    channel_data->Read(vec_data);
    multi_output_channel_[i]->Open();
    multi_output_channel_[i]->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
  }
  CHECK(channel_data->Size() == 0);  // NOLINT
  channel_data->Clear();
  VLOG(3) << "MultiSlotDataset::MergeByInsId end";
}

1238 1239 1240
void MultiSlotDataset::GetRandomData(
    const std::unordered_set<uint16_t>& slots_to_replace,
    std::vector<Record>* result) {
1241 1242 1243 1244
  int debug_erase_cnt = 0;
  int debug_push_cnt = 0;
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  slots_shuffle_rclist_.ReInit();
1245 1246
  const auto& slots_shuffle_original_data = GetSlotsOriginalData();
  for (const auto& rec : slots_shuffle_original_data) {
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
    RecordCandidate rand_rec;
    Record new_rec = rec;
    slots_shuffle_rclist_.AddAndGet(rec, &rand_rec);
    for (auto it = new_rec.uint64_feasigns_.begin();
         it != new_rec.uint64_feasigns_.end();) {
      if (slots_to_replace.find(it->slot()) != slots_to_replace.end()) {
        it = new_rec.uint64_feasigns_.erase(it);
        debug_erase_cnt += 1;
      } else {
        ++it;
      }
    }
    for (auto slot : slots_to_replace) {
1260
      auto range = rand_rec.feas_.equal_range(slot);
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
      for (auto it = range.first; it != range.second; ++it) {
        new_rec.uint64_feasigns_.push_back({it->second, it->first});
        debug_push_cnt += 1;
      }
    }
    result->push_back(std::move(new_rec));
  }
  VLOG(2) << "erase feasign num: " << debug_erase_cnt
          << " repush feasign num: " << debug_push_cnt;
}

1272 1273 1274
void MultiSlotDataset::PreprocessChannel(
    const std::set<std::string>& slots_to_replace,
    std::unordered_set<uint16_t>& index_slots) {  // NOLINT
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
  int out_channel_size = 0;
  if (cur_channel_ == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      out_channel_size += multi_output_channel_[i]->Size();
    }
  } else {
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      out_channel_size += multi_consume_channel_[i]->Size();
    }
  }
  VLOG(2) << "DatasetImpl<T>::SlotsShuffle() begin with input channel size: "
          << input_channel_->Size()
          << " output channel size: " << out_channel_size;
1288

1289 1290 1291 1292 1293
  if ((!input_channel_ || input_channel_->Size() == 0) &&
      slots_shuffle_original_data_.size() == 0 && out_channel_size == 0) {
    VLOG(3) << "DatasetImpl<T>::SlotsShuffle() end, no data to slots shuffle";
    return;
  }
1294

1295
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
1296
  for (int i = 0; i < multi_slot_desc.slots_size(); ++i) {
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
    std::string cur_slot = multi_slot_desc.slots(i).name();
    if (slots_to_replace.find(cur_slot) != slots_to_replace.end()) {
      index_slots.insert(i);
    }
  }
  if (slots_shuffle_original_data_.size() == 0) {
    // before first slots shuffle, instances could be in
    // input_channel, oupput_channel or consume_channel
    if (input_channel_ && input_channel_->Size() != 0) {
      slots_shuffle_original_data_.reserve(input_channel_->Size());
      input_channel_->Close();
      input_channel_->ReadAll(slots_shuffle_original_data_);
    } else {
      CHECK(out_channel_size > 0);  // NOLINT
      if (cur_channel_ == 0) {
        for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
          std::vector<Record> vec_data;
          multi_output_channel_[i]->Close();
          multi_output_channel_[i]->ReadAll(vec_data);
          slots_shuffle_original_data_.reserve(
              slots_shuffle_original_data_.size() + vec_data.size());
          slots_shuffle_original_data_.insert(
              slots_shuffle_original_data_.end(),
              std::make_move_iterator(vec_data.begin()),
              std::make_move_iterator(vec_data.end()));
          vec_data.clear();
          vec_data.shrink_to_fit();
          multi_output_channel_[i]->Clear();
        }
      } else {
        for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
          std::vector<Record> vec_data;
          multi_consume_channel_[i]->Close();
          multi_consume_channel_[i]->ReadAll(vec_data);
          slots_shuffle_original_data_.reserve(
              slots_shuffle_original_data_.size() + vec_data.size());
          slots_shuffle_original_data_.insert(
              slots_shuffle_original_data_.end(),
              std::make_move_iterator(vec_data.begin()),
              std::make_move_iterator(vec_data.end()));
          vec_data.clear();
          vec_data.shrink_to_fit();
          multi_consume_channel_[i]->Clear();
        }
      }
    }
  } else {
    // if already have original data for slots shuffle, clear channel
    input_channel_->Clear();
    if (cur_channel_ == 0) {
      for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
        if (!multi_output_channel_[i]) {
          continue;
        }
        multi_output_channel_[i]->Clear();
      }
    } else {
      for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
        if (!multi_consume_channel_[i]) {
          continue;
        }
        multi_consume_channel_[i]->Clear();
      }
    }
  }
  int end_size = 0;
  if (cur_channel_ == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      if (!multi_output_channel_[i]) {
        continue;
      }
      end_size += multi_output_channel_[i]->Size();
    }
  } else {
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      if (!multi_consume_channel_[i]) {
        continue;
      }
      end_size += multi_consume_channel_[i]->Size();
    }
  }
  CHECK(input_channel_->Size() == 0)
      << "input channel should be empty before slots shuffle";
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
}

// slots shuffle to input_channel_ with needed-shuffle slots
void MultiSlotDataset::SlotsShuffle(
    const std::set<std::string>& slots_to_replace) {
  PADDLE_ENFORCE_EQ(slots_shuffle_fea_eval_, true,
                    platform::errors::PreconditionNotMet(
                        "fea eval mode off, need to set on for slots shuffle"));
  platform::Timer timeline;
  timeline.Start();
  std::unordered_set<uint16_t> index_slots;
  PreprocessChannel(slots_to_replace, index_slots);

1393 1394 1395 1396 1397 1398 1399 1400 1401
  std::vector<Record> random_data;
  random_data.clear();
  // get slots shuffled random_data
  GetRandomData(index_slots, &random_data);
  input_channel_->Open();
  input_channel_->Write(std::move(random_data));
  random_data.clear();
  random_data.shrink_to_fit();
  input_channel_->Close();
Y
yaoxuefeng 已提交
1402
  cur_channel_ = 0;
1403 1404 1405 1406 1407 1408 1409

  timeline.Pause();
  VLOG(2) << "DatasetImpl<T>::SlotsShuffle() end"
          << ", memory data size for slots shuffle=" << input_channel_->Size()
          << ", cost time=" << timeline.ElapsedSec() << " seconds";
}

D
dongdaxiang 已提交
1410 1411
}  // end namespace framework
}  // end namespace paddle