data_set.cc 31.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *     Unless required by applicable law or agreed to in writing, software
 *     distributed under the License is distributed on an "AS IS" BASIS,
 *     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *     See the License for the specific language governing permissions and
 *     limitations under the License. */

15
#include "paddle/fluid/framework/data_set.h"
16
#include <algorithm>
D
dongdaxiang 已提交
17
#include <random>
18
#include <unordered_map>
19
#include <unordered_set>
20 21 22
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
23
#include "paddle/fluid/framework/data_feed_factory.h"
24
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
25
#include "paddle/fluid/framework/io/fs.h"
26
#include "paddle/fluid/platform/timer.h"
27
#include "xxhash.h"  // NOLINT
28

D
dongdaxiang 已提交
29 30 31 32 33
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

34 35 36
namespace paddle {
namespace framework {

X
xjqbest 已提交
37
// constructor
38
template <typename T>
D
dongdaxiang 已提交
39
DatasetImpl<T>::DatasetImpl() {
J
jiaqi 已提交
40
  VLOG(3) << "DatasetImpl<T>::DatasetImpl() constructor";
D
dongdaxiang 已提交
41
  thread_num_ = 1;
42
  trainer_num_ = 1;
J
jiaqi 已提交
43
  channel_num_ = 1;
44
  file_idx_ = 0;
J
jiaqi 已提交
45
  cur_channel_ = 0;
46 47
  fleet_send_batch_size_ = 1024;
  fleet_send_sleep_seconds_ = 0;
48
  merge_by_insid_ = false;
49
  merge_size_ = 2;
50 51
  parse_ins_id_ = false;
  parse_content_ = false;
52
  preload_thread_num_ = 0;
53
  global_index_ = 0;
D
dongdaxiang 已提交
54
}
55

X
xjqbest 已提交
56
// set filelist, file_idx_ will reset to zero.
57 58
template <typename T>
void DatasetImpl<T>::SetFileList(const std::vector<std::string>& filelist) {
59
  VLOG(3) << "filelist size: " << filelist.size();
60
  filelist_ = filelist;
61
  file_idx_ = 0;
62 63
}

X
xjqbest 已提交
64
// set expect thread num. actually it may change
65 66
template <typename T>
void DatasetImpl<T>::SetThreadNum(int thread_num) {
67
  VLOG(3) << "SetThreadNum thread_num=" << thread_num;
68 69 70
  thread_num_ = thread_num;
}

X
xjqbest 已提交
71 72 73
// if you run distributed, and want to do global shuffle,
// set this before global shuffle.
// be sure you call CreateReaders before SetTrainerNum
74
template <typename T>
X
xujiaqi01 已提交
75 76
void DatasetImpl<T>::SetTrainerNum(int trainer_num) {
  trainer_num_ = trainer_num;
77 78
}

X
xjqbest 已提交
79 80 81 82 83 84 85 86
// if you run distributed, and want to do global shuffle,
// set this before global shuffle.
// be sure you call CreateReaders before SetFleetSendBatchSize
template <typename T>
void DatasetImpl<T>::SetFleetSendBatchSize(int64_t size) {
  fleet_send_batch_size_ = size;
}

87 88 89
template <typename T>
void DatasetImpl<T>::SetHdfsConfig(const std::string& fs_name,
                                   const std::string& fs_ugi) {
X
xjqbest 已提交
90 91
  fs_name_ = fs_name;
  fs_ugi_ = fs_ugi;
92 93 94 95
  std::string cmd = std::string("hadoop fs");
  cmd += " -D fs.default.name=" + fs_name;
  cmd += " -D hadoop.job.ugi=" + fs_ugi;
  paddle::framework::hdfs_set_command(cmd);
X
xujiaqi01 已提交
96
}
97

98 99
template <typename T>
void DatasetImpl<T>::SetDataFeedDesc(const std::string& data_feed_desc_str) {
100 101
  google::protobuf::TextFormat::ParseFromString(data_feed_desc_str,
                                                &data_feed_desc_);
102 103
}

104
template <typename T>
J
jiaqi 已提交
105 106 107 108
void DatasetImpl<T>::SetChannelNum(int channel_num) {
  channel_num_ = channel_num;
}

109 110 111 112 113 114 115 116 117 118
template <typename T>
void DatasetImpl<T>::SetParseInsId(bool parse_ins_id) {
  parse_ins_id_ = parse_ins_id;
}

template <typename T>
void DatasetImpl<T>::SetParseContent(bool parse_content) {
  parse_content_ = parse_content;
}

119
template <typename T>
120
void DatasetImpl<T>::SetMergeByInsId(int merge_size) {
121
  merge_by_insid_ = true;
122
  parse_ins_id_ = true;
123
  merge_size_ = merge_size;
124 125
}

126 127 128 129 130 131 132 133
template <typename T>
void DatasetImpl<T>::SetFeaEval(bool fea_eval, int record_candidate_size) {
  slots_shuffle_fea_eval_ = fea_eval;
  slots_shuffle_rclist_.ReSize(record_candidate_size);
  VLOG(3) << "SetFeaEval fea eval mode: " << fea_eval
          << " with record candidate size: " << record_candidate_size;
}

J
jiaqi 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
template <typename T>
std::vector<paddle::framework::DataFeed*> DatasetImpl<T>::GetReaders() {
  std::vector<paddle::framework::DataFeed*> ret;
  ret.reserve(readers_.size());
  for (auto i : readers_) {
    ret.push_back(i.get());
  }
  return ret;
}

template <typename T>
void DatasetImpl<T>::CreateChannel() {
  if (input_channel_ == nullptr) {
    input_channel_ = paddle::framework::MakeChannel<T>();
  }
  if (multi_output_channel_.size() == 0) {
    multi_output_channel_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_output_channel_.push_back(paddle::framework::MakeChannel<T>());
    }
  }
  if (multi_consume_channel_.size() == 0) {
    multi_consume_channel_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_consume_channel_.push_back(paddle::framework::MakeChannel<T>());
    }
  }
161 162
}

163 164 165 166 167 168 169 170 171 172 173 174
// if sent message between workers, should first call this function
template <typename T>
void DatasetImpl<T>::RegisterClientToClientMsgHandler() {
  auto fleet_ptr = FleetWrapper::GetInstance();
  VLOG(3) << "RegisterClientToClientMsgHandler";
  fleet_ptr->RegisterClientToClientMsgHandler(
      0, [this](int msg_type, int client_id, const std::string& msg) -> int {
        return this->ReceiveFromClient(msg_type, client_id, msg);
      });
  VLOG(3) << "RegisterClientToClientMsgHandler done";
}

X
xjqbest 已提交
175 176
// load data into memory, Dataset hold this memory,
// which will later be fed into readers' channel
177 178 179
template <typename T>
void DatasetImpl<T>::LoadIntoMemory() {
  VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() begin";
180 181
  platform::Timer timeline;
  timeline.Start();
182 183
  std::vector<std::thread> load_threads;
  for (int64_t i = 0; i < thread_num_; ++i) {
D
dongdaxiang 已提交
184 185
    load_threads.push_back(std::thread(
        &paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get()));
186 187 188 189
  }
  for (std::thread& t : load_threads) {
    t.join();
  }
J
jiaqi 已提交
190 191 192
  input_channel_->Close();
  int64_t in_chan_size = input_channel_->Size();
  input_channel_->SetBlockSize(in_chan_size / thread_num_ + 1);
193 194
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() end"
J
jiaqi 已提交
195
          << ", memory data size=" << input_channel_->Size()
196
          << ", cost time=" << timeline.ElapsedSec() << " seconds";
197 198
}

J
jiaqi 已提交
199 200 201
template <typename T>
void DatasetImpl<T>::PreLoadIntoMemory() {
  VLOG(3) << "DatasetImpl<T>::PreLoadIntoMemory() begin";
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
  if (preload_thread_num_ != 0) {
    CHECK(preload_thread_num_ == preload_readers_.size());
    preload_threads_.clear();
    for (int64_t i = 0; i < preload_thread_num_; ++i) {
      preload_threads_.push_back(
          std::thread(&paddle::framework::DataFeed::LoadIntoMemory,
                      preload_readers_[i].get()));
    }
  } else {
    CHECK(thread_num_ == readers_.size());
    preload_threads_.clear();
    for (int64_t i = 0; i < thread_num_; ++i) {
      preload_threads_.push_back(std::thread(
          &paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get()));
    }
J
jiaqi 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
  }
  VLOG(3) << "DatasetImpl<T>::PreLoadIntoMemory() end";
}

template <typename T>
void DatasetImpl<T>::WaitPreLoadDone() {
  VLOG(3) << "DatasetImpl<T>::WaitPreLoadDone() begin";
  for (std::thread& t : preload_threads_) {
    t.join();
  }
  input_channel_->Close();
  int64_t in_chan_size = input_channel_->Size();
  input_channel_->SetBlockSize(in_chan_size / thread_num_ + 1);
  VLOG(3) << "DatasetImpl<T>::WaitPreLoadDone() end";
}

233 234 235 236
// release memory data
template <typename T>
void DatasetImpl<T>::ReleaseMemory() {
  VLOG(3) << "DatasetImpl<T>::ReleaseMemory() begin";
J
jiaqi 已提交
237 238 239 240 241 242 243 244 245 246
  if (input_channel_) {
    input_channel_->Clear();
    input_channel_ = nullptr;
  }
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    if (!multi_output_channel_[i]) {
      continue;
    }
    multi_output_channel_[i]->Clear();
    multi_output_channel_[i] = nullptr;
247
  }
J
jiaqi 已提交
248 249 250 251 252 253 254 255 256 257
  std::vector<paddle::framework::Channel<T>>().swap(multi_output_channel_);
  for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
    if (!multi_consume_channel_[i]) {
      continue;
    }
    multi_consume_channel_[i]->Clear();
    multi_consume_channel_[i] = nullptr;
  }
  std::vector<paddle::framework::Channel<T>>().swap(multi_consume_channel_);
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
258 259 260
  VLOG(3) << "DatasetImpl<T>::ReleaseMemory() end";
}

X
xjqbest 已提交
261
// do local shuffle
262 263 264
template <typename T>
void DatasetImpl<T>::LocalShuffle() {
  VLOG(3) << "DatasetImpl<T>::LocalShuffle() begin";
265 266
  platform::Timer timeline;
  timeline.Start();
267

J
jiaqi 已提交
268 269 270
  if (!input_channel_ || input_channel_->Size() == 0) {
    VLOG(3) << "DatasetImpl<T>::LocalShuffle() end, no data to shuffle";
    return;
271
  }
J
jiaqi 已提交
272 273 274 275 276 277 278 279 280 281 282
  auto fleet_ptr = FleetWrapper::GetInstance();
  input_channel_->Close();
  std::vector<T> data;
  input_channel_->ReadAll(data);
  std::shuffle(data.begin(), data.end(), fleet_ptr->LocalRandomEngine());
  input_channel_->Open();
  input_channel_->Write(std::move(data));
  data.clear();
  data.shrink_to_fit();
  input_channel_->Close();

283 284 285
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::LocalShuffle() end, cost time="
          << timeline.ElapsedSec() << " seconds";
286 287
}

288
template <typename T>
289
void DatasetImpl<T>::GlobalShuffle(int thread_num) {
290
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() begin";
291 292
  platform::Timer timeline;
  timeline.Start();
293
  auto fleet_ptr = FleetWrapper::GetInstance();
J
jiaqi 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314

  if (!input_channel_ || input_channel_->Size() == 0) {
    VLOG(3) << "DatasetImpl<T>::GlobalShuffle() end, no data to shuffle";
    return;
  }

  // local shuffle
  input_channel_->Close();
  std::vector<T> data;
  input_channel_->ReadAll(data);
  std::shuffle(data.begin(), data.end(), fleet_ptr->LocalRandomEngine());
  input_channel_->Open();
  input_channel_->Write(std::move(data));
  data.clear();
  data.shrink_to_fit();

  input_channel_->Close();
  input_channel_->SetBlockSize(fleet_send_batch_size_);
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() input_channel_ size "
          << input_channel_->Size();

315 316 317 318 319 320 321 322 323 324
  auto get_client_id = [this, fleet_ptr](const T& data) -> size_t {
    if (!this->merge_by_insid_) {
      return fleet_ptr->LocalRandomEngine()() % this->trainer_num_;
    } else {
      return XXH64(data.ins_id_.data(), data.ins_id_.length(), 0) %
             this->trainer_num_;
    }
  };

  auto global_shuffle_func = [this, get_client_id]() {
J
jiaqi 已提交
325 326 327 328 329
    auto fleet_ptr = FleetWrapper::GetInstance();
    std::vector<T> data;
    while (this->input_channel_->Read(data)) {
      std::vector<paddle::framework::BinaryArchive> ars(this->trainer_num_);
      for (auto& t : data) {
330
        auto client_id = get_client_id(t);
J
jiaqi 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
        ars[client_id] << t;
      }
      std::vector<std::future<int32_t>> total_status;
      std::vector<int> send_index(this->trainer_num_);
      for (int i = 0; i < this->trainer_num_; ++i) {
        send_index[i] = i;
      }
      std::shuffle(send_index.begin(), send_index.end(),
                   fleet_ptr->LocalRandomEngine());
      for (auto index = 0u; index < this->trainer_num_; ++index) {
        int i = send_index[index];
        if (ars[i].Length() == 0) {
          continue;
        }
        std::string msg(ars[i].Buffer(), ars[i].Length());
        auto ret = fleet_ptr->SendClientToClientMsg(0, i, msg);
        total_status.push_back(std::move(ret));
      }
      for (auto& t : total_status) {
        t.wait();
      }
      ars.clear();
      ars.shrink_to_fit();
      data.clear();
      data.shrink_to_fit();
356 357 358 359 360 361
      // currently we find bottleneck is server not able to handle large data
      // in time, so we can remove this sleep and set fleet_send_batch_size to
      // 1024, and set server thread to 24.
      if (fleet_send_sleep_seconds_ != 0) {
        sleep(this->fleet_send_sleep_seconds_);
      }
J
jiaqi 已提交
362 363 364
    }
  };

365
  std::vector<std::thread> global_shuffle_threads;
366 367 368 369 370
  if (thread_num == -1) {
    thread_num = thread_num_;
  }
  VLOG(3) << "start global shuffle threads, num = " << thread_num;
  for (int i = 0; i < thread_num; ++i) {
J
jiaqi 已提交
371
    global_shuffle_threads.push_back(std::thread(global_shuffle_func));
372 373 374
  }
  for (std::thread& t : global_shuffle_threads) {
    t.join();
375
  }
J
jiaqi 已提交
376 377 378
  global_shuffle_threads.clear();
  global_shuffle_threads.shrink_to_fit();
  input_channel_->Clear();
379 380 381
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() end, cost time="
          << timeline.ElapsedSec() << " seconds";
382 383
}

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
template <typename T>
void DatasetImpl<T>::DynamicAdjustChannelNum(int channel_num) {
  if (channel_num_ == channel_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustChannelNum channel_num_="
            << channel_num_ << ", channel_num_=channel_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust channel num from " << channel_num_ << " to "
          << channel_num;
  channel_num_ = channel_num;
  std::vector<paddle::framework::Channel<T>>* origin_channels = nullptr;
  std::vector<paddle::framework::Channel<T>>* other_channels = nullptr;
  // find out which channel (output or consume) has data
  int cur_channel = 0;
  uint64_t output_channels_data_size = 0;
  uint64_t consume_channels_data_size = 0;
  CHECK(multi_output_channel_.size() == multi_consume_channel_.size());
  for (int i = 0; i < multi_output_channel_.size(); ++i) {
    output_channels_data_size += multi_output_channel_[i]->Size();
    consume_channels_data_size += multi_consume_channel_[i]->Size();
  }
  if (output_channels_data_size != 0) {
    CHECK(consume_channels_data_size == 0);  // NOLINT
    cur_channel = 0;
  } else {
    CHECK(output_channels_data_size == 0);  // NOLINT
    cur_channel = 1;
  }
  if (cur_channel == 0) {
    origin_channels = &multi_output_channel_;
    other_channels = &multi_consume_channel_;
  } else {
    origin_channels = &multi_consume_channel_;
    other_channels = &multi_output_channel_;
  }
  CHECK(origin_channels != nullptr);  // NOLINT
  CHECK(other_channels != nullptr);   // NOLINT

  paddle::framework::Channel<T> total_data_channel =
      paddle::framework::MakeChannel<T>();
  std::vector<paddle::framework::Channel<T>> new_channels;
  std::vector<paddle::framework::Channel<T>> new_other_channels;
  std::vector<T> local_vec;
  for (int i = 0; i < origin_channels->size(); ++i) {
    local_vec.clear();
    (*origin_channels)[i]->Close();
    (*origin_channels)[i]->ReadAll(local_vec);
    total_data_channel->Write(std::move(local_vec));
  }
  total_data_channel->Close();
  total_data_channel->SetBlockSize(total_data_channel->Size() / channel_num +
                                   1);

  for (int i = 0; i < channel_num; ++i) {
    local_vec.clear();
    total_data_channel->Read(local_vec);
    new_other_channels.push_back(paddle::framework::MakeChannel<T>());
    new_channels.push_back(paddle::framework::MakeChannel<T>());
    new_channels[i]->Write(std::move(local_vec));
  }

  total_data_channel->Clear();
  origin_channels->clear();
  other_channels->clear();
  *origin_channels = new_channels;
  *other_channels = new_other_channels;

  new_channels.clear();
  new_other_channels.clear();
  std::vector<paddle::framework::Channel<T>>().swap(new_channels);
  std::vector<paddle::framework::Channel<T>>().swap(new_other_channels);
  local_vec.clear();
  std::vector<T>().swap(local_vec);
  VLOG(3) << "adjust channel num done";
}

template <typename T>
void DatasetImpl<T>::DynamicAdjustReadersNum(int thread_num) {
  if (thread_num_ == thread_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustReadersNum thread_num_="
            << thread_num_ << ", thread_num_=thread_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust readers num from " << thread_num_ << " to " << thread_num;
  thread_num_ = thread_num;
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
  CreateReaders();
  VLOG(3) << "adjust readers num done";
}

template <typename T>
void DatasetImpl<T>::SetFleetSendSleepSeconds(int seconds) {
  fleet_send_sleep_seconds_ = seconds;
}

479 480
template <typename T>
void DatasetImpl<T>::CreateReaders() {
481
  VLOG(3) << "Calling CreateReaders()";
J
jiaqi 已提交
482 483 484 485 486 487
  VLOG(3) << "thread num in Dataset: " << thread_num_;
  VLOG(3) << "Filelist size in Dataset: " << filelist_.size();
  VLOG(3) << "channel num in Dataset: " << channel_num_;
  CHECK(thread_num_ > 0) << "thread num should > 0";
  CHECK(channel_num_ > 0) << "channel num should > 0";
  CHECK(channel_num_ <= thread_num_) << "channel num should <= thread num";
488
  VLOG(3) << "readers size: " << readers_.size();
489
  if (readers_.size() != 0) {
J
jiaqi 已提交
490 491
    VLOG(3) << "readers_.size() = " << readers_.size()
            << ", will not create again";
492 493
    return;
  }
494
  VLOG(3) << "data feed class name: " << data_feed_desc_.name();
J
jiaqi 已提交
495
  int channel_idx = 0;
496
  for (int i = 0; i < thread_num_; ++i) {
497
    readers_.push_back(DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
J
jiaqi 已提交
498 499 500 501 502 503
    readers_[i]->Init(data_feed_desc_);
    readers_[i]->SetThreadId(i);
    readers_[i]->SetThreadNum(thread_num_);
    readers_[i]->SetFileListMutex(&mutex_for_pick_file_);
    readers_[i]->SetFileListIndex(&file_idx_);
    readers_[i]->SetFileList(filelist_);
504 505
    readers_[i]->SetParseInsId(parse_ins_id_);
    readers_[i]->SetParseContent(parse_content_);
J
jiaqi 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518 519
    if (input_channel_ != nullptr) {
      readers_[i]->SetInputChannel(input_channel_.get());
    }
    if (cur_channel_ == 0 && channel_idx < multi_output_channel_.size()) {
      readers_[i]->SetOutputChannel(multi_output_channel_[channel_idx].get());
      readers_[i]->SetConsumeChannel(multi_consume_channel_[channel_idx].get());
    } else if (channel_idx < multi_output_channel_.size()) {
      readers_[i]->SetOutputChannel(multi_consume_channel_[channel_idx].get());
      readers_[i]->SetConsumeChannel(multi_output_channel_[channel_idx].get());
    }
    ++channel_idx;
    if (channel_idx >= channel_num_) {
      channel_idx = 0;
    }
520
  }
J
jiaqi 已提交
521
  VLOG(3) << "readers size: " << readers_.size();
522 523
}

524 525 526
template <typename T>
void DatasetImpl<T>::DestroyReaders() {
  VLOG(3) << "Calling DestroyReaders()";
527
  VLOG(3) << "readers size1: " << readers_.size();
528
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
529
  VLOG(3) << "readers size: " << readers_.size();
J
jiaqi 已提交
530 531
  file_idx_ = 0;
  cur_channel_ = 1 - cur_channel_;
532 533
}

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
template <typename T>
void DatasetImpl<T>::SetPreLoadThreadNum(int thread_num) {
  preload_thread_num_ = thread_num;
}

template <typename T>
void DatasetImpl<T>::CreatePreLoadReaders() {
  VLOG(3) << "Begin CreatePreLoadReaders";
  if (preload_thread_num_ == 0) {
    preload_thread_num_ = thread_num_;
  }
  CHECK(preload_thread_num_ > 0) << "thread num should > 0";
  CHECK(input_channel_ != nullptr);
  preload_readers_.clear();
  for (int i = 0; i < preload_thread_num_; ++i) {
    preload_readers_.push_back(
        DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
    preload_readers_[i]->Init(data_feed_desc_);
    preload_readers_[i]->SetThreadId(i);
    preload_readers_[i]->SetThreadNum(preload_thread_num_);
    preload_readers_[i]->SetFileListMutex(&mutex_for_pick_file_);
    preload_readers_[i]->SetFileListIndex(&file_idx_);
    preload_readers_[i]->SetFileList(filelist_);
    preload_readers_[i]->SetParseInsId(parse_ins_id_);
558
    preload_readers_[i]->SetParseContent(parse_content_);
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
    preload_readers_[i]->SetInputChannel(input_channel_.get());
    preload_readers_[i]->SetOutputChannel(nullptr);
    preload_readers_[i]->SetConsumeChannel(nullptr);
  }
  VLOG(3) << "End CreatePreLoadReaders";
}

template <typename T>
void DatasetImpl<T>::DestroyPreLoadReaders() {
  VLOG(3) << "Begin DestroyPreLoadReaders";
  preload_readers_.clear();
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(
      preload_readers_);
  file_idx_ = 0;
  VLOG(3) << "End DestroyPreLoadReaders";
}

576 577
template <typename T>
int64_t DatasetImpl<T>::GetMemoryDataSize() {
J
jiaqi 已提交
578
  return input_channel_->Size();
579 580 581 582 583
}

template <typename T>
int64_t DatasetImpl<T>::GetShuffleDataSize() {
  int64_t sum = 0;
J
jiaqi 已提交
584 585
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    sum += multi_output_channel_[i]->Size() + multi_consume_channel_[i]->Size();
586 587 588 589
  }
  return sum;
}

590 591
template <typename T>
int DatasetImpl<T>::ReceiveFromClient(int msg_type, int client_id,
D
dongdaxiang 已提交
592
                                      const std::string& msg) {
D
dongdaxiang 已提交
593
#ifdef _LINUX
594
  VLOG(3) << "ReceiveFromClient msg_type=" << msg_type
595
          << ", client_id=" << client_id << ", msg length=" << msg.length();
J
jiaqi 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609
  if (msg.length() == 0) {
    return 0;
  }
  paddle::framework::BinaryArchive ar;
  ar.SetReadBuffer(const_cast<char*>(msg.c_str()), msg.length(), nullptr);
  if (ar.Cursor() == ar.Finish()) {
    return 0;
  }
  std::vector<T> data;
  while (ar.Cursor() < ar.Finish()) {
    data.push_back(ar.Get<T>());
  }
  CHECK(ar.Cursor() == ar.Finish());

610
  auto fleet_ptr = FleetWrapper::GetInstance();
611 612 613 614 615 616 617 618 619 620
  // not use random because it doesn't perform well here.
  // to make sure each channel get data equally, we just put data to
  // channel one by one.
  // int64_t index = fleet_ptr->LocalRandomEngine()() % channel_num_;
  int64_t index = 0;
  {
    std::unique_lock<std::mutex> lk(global_index_mutex_);
    index = global_index_++;
  }
  index = index % channel_num_;
621
  VLOG(3) << "ramdom index=" << index;
J
jiaqi 已提交
622 623 624 625
  multi_output_channel_[index]->Write(std::move(data));

  data.clear();
  data.shrink_to_fit();
D
dongdaxiang 已提交
626
#endif
627 628 629
  return 0;
}

630
// explicit instantiation
J
jiaqi 已提交
631
template class DatasetImpl<Record>;
632

633 634 635 636 637 638 639 640
void MultiSlotDataset::MergeByInsId() {
  VLOG(3) << "MultiSlotDataset::MergeByInsId begin";
  if (!merge_by_insid_) {
    VLOG(3) << "merge_by_insid=false, will not MergeByInsId";
    return;
  }
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  std::vector<std::string> use_slots;
641
  for (int i = 0; i < multi_slot_desc.slots_size(); ++i) {
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
    const auto& slot = multi_slot_desc.slots(i);
    if (slot.is_used()) {
      use_slots.push_back(slot.name());
    }
  }
  CHECK(multi_output_channel_.size() != 0);  // NOLINT
  auto channel_data = paddle::framework::MakeChannel<Record>();
  VLOG(3) << "multi_output_channel_.size() " << multi_output_channel_.size();
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    std::vector<Record> vec_data;
    multi_output_channel_[i]->Close();
    multi_output_channel_[i]->ReadAll(vec_data);
    channel_data->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
    multi_output_channel_[i]->Clear();
  }
  channel_data->Close();
  std::vector<Record> recs;
  recs.reserve(channel_data->Size());
  channel_data->ReadAll(recs);
  channel_data->Clear();
  std::sort(recs.begin(), recs.end(), [](const Record& a, const Record& b) {
    return a.ins_id_ < b.ins_id_;
  });

  std::vector<Record> results;
669 670 671 672 673 674
  uint64_t drop_ins_num = 0;
  std::unordered_set<uint16_t> all_int64;
  std::unordered_set<uint16_t> all_float;
  std::unordered_set<uint16_t> local_uint64;
  std::unordered_set<uint16_t> local_float;

675 676 677 678 679 680
  VLOG(3) << "recs.size() " << recs.size();
  for (size_t i = 0; i < recs.size();) {
    size_t j = i + 1;
    while (j < recs.size() && recs[j].ins_id_ == recs[i].ins_id_) {
      j++;
    }
681 682 683 684
    if (merge_size_ > 0 && j - i != merge_size_) {
      drop_ins_num += j - i;
      LOG(WARNING) << "drop ins " << recs[i].ins_id_ << " size=" << j - i
                   << ", because merge_size=" << merge_size_;
685 686 687 688
      i = j;
      continue;
    }

689 690 691 692 693 694 695 696
    all_int64.clear();
    all_float.clear();
    bool has_conflict_slot = false;
    uint16_t conflict_slot = 0;

    Record rec;
    rec.ins_id_ = recs[i].ins_id_;
    rec.content_ = recs[i].content_;
697

698 699 700
    for (size_t k = i; k < j; k++) {
      local_uint64.clear();
      local_float.clear();
701
      for (auto& feature : recs[k].uint64_feasigns_) {
702 703 704 705 706
        uint16_t slot = feature.slot();
        if (all_int64.find(slot) != all_int64.end()) {
          has_conflict_slot = true;
          conflict_slot = slot;
          break;
707
        }
708 709 710 711 712
        local_uint64.insert(slot);
        rec.uint64_feasigns_.push_back(std::move(feature));
      }
      if (has_conflict_slot) {
        break;
713
      }
714 715
      all_int64.insert(local_uint64.begin(), local_uint64.end());

716
      for (auto& feature : recs[k].float_feasigns_) {
717 718 719 720 721
        uint16_t slot = feature.slot();
        if (all_float.find(slot) != all_float.end()) {
          has_conflict_slot = true;
          conflict_slot = slot;
          break;
722
        }
723 724 725 726 727
        local_float.insert(slot);
        rec.float_feasigns_.push_back(std::move(feature));
      }
      if (has_conflict_slot) {
        break;
728
      }
729
      all_float.insert(local_float.begin(), local_float.end());
730 731
    }

732 733 734 735
    if (has_conflict_slot) {
      LOG(WARNING) << "drop ins " << recs[i].ins_id_ << " size=" << j - i
                   << ", because conflict_slot=" << use_slots[conflict_slot];
      drop_ins_num += j - i;
736
    } else {
737
      results.push_back(std::move(rec));
738
    }
739
    i = j;
740
  }
741
  std::vector<Record>().swap(recs);
742
  VLOG(3) << "results size " << results.size();
743
  LOG(WARNING) << "total drop ins num: " << drop_ins_num;
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
  results.shrink_to_fit();

  auto fleet_ptr = FleetWrapper::GetInstance();
  std::shuffle(results.begin(), results.end(), fleet_ptr->LocalRandomEngine());
  channel_data->Open();
  channel_data->Write(std::move(results));
  channel_data->Close();
  results.clear();
  results.shrink_to_fit();
  VLOG(3) << "channel data size " << channel_data->Size();
  channel_data->SetBlockSize(channel_data->Size() / channel_num_ + 1);
  VLOG(3) << "channel data block size " << channel_data->BlockSize();
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    std::vector<Record> vec_data;
    channel_data->Read(vec_data);
    multi_output_channel_[i]->Open();
    multi_output_channel_[i]->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
  }
  CHECK(channel_data->Size() == 0);  // NOLINT
  channel_data->Clear();
  VLOG(3) << "MultiSlotDataset::MergeByInsId end";
}

769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
void MultiSlotDataset::GetRandomData(const std::set<uint16_t>& slots_to_replace,
                                     std::vector<Record>* result) {
  int debug_erase_cnt = 0;
  int debug_push_cnt = 0;
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  slots_shuffle_rclist_.ReInit();
  for (const auto& rec : slots_shuffle_original_data_) {
    RecordCandidate rand_rec;
    Record new_rec = rec;
    slots_shuffle_rclist_.AddAndGet(rec, &rand_rec);
    for (auto it = new_rec.uint64_feasigns_.begin();
         it != new_rec.uint64_feasigns_.end();) {
      if (slots_to_replace.find(it->slot()) != slots_to_replace.end()) {
        it = new_rec.uint64_feasigns_.erase(it);
        debug_erase_cnt += 1;
      } else {
        ++it;
      }
    }
    for (auto slot : slots_to_replace) {
      auto range = rand_rec.feas.equal_range(slot);
      for (auto it = range.first; it != range.second; ++it) {
        new_rec.uint64_feasigns_.push_back({it->second, it->first});
        debug_push_cnt += 1;
      }
    }
    result->push_back(std::move(new_rec));
  }
  VLOG(2) << "erase feasign num: " << debug_erase_cnt
          << " repush feasign num: " << debug_push_cnt;
}

// slots shuffle to input_channel_ with needed-shuffle slots
void MultiSlotDataset::SlotsShuffle(
    const std::set<std::string>& slots_to_replace) {
  int out_channel_size = 0;
  if (cur_channel_ == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      out_channel_size += multi_output_channel_[i]->Size();
    }
  } else {
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      out_channel_size += multi_consume_channel_[i]->Size();
    }
  }
  VLOG(2) << "DatasetImpl<T>::SlotsShuffle() begin with input channel size: "
          << input_channel_->Size()
          << " output channel size: " << out_channel_size;
  if (!slots_shuffle_fea_eval_) {
    VLOG(3) << "DatasetImpl<T>::SlotsShuffle() end,"
               "fea eval mode off, need to set on for slots shuffle";
    return;
  }
  if ((!input_channel_ || input_channel_->Size() == 0) &&
      slots_shuffle_original_data_.size() == 0 && out_channel_size == 0) {
    VLOG(3) << "DatasetImpl<T>::SlotsShuffle() end, no data to slots shuffle";
    return;
  }
  platform::Timer timeline;
  timeline.Start();
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  std::set<uint16_t> index_slots;
831
  for (int i = 0; i < multi_slot_desc.slots_size(); ++i) {
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
    std::string cur_slot = multi_slot_desc.slots(i).name();
    if (slots_to_replace.find(cur_slot) != slots_to_replace.end()) {
      index_slots.insert(i);
    }
  }
  if (slots_shuffle_original_data_.size() == 0) {
    // before first slots shuffle, instances could be in
    // input_channel, oupput_channel or consume_channel
    if (input_channel_ && input_channel_->Size() != 0) {
      slots_shuffle_original_data_.reserve(input_channel_->Size());
      input_channel_->Close();
      input_channel_->ReadAll(slots_shuffle_original_data_);
    } else {
      CHECK(out_channel_size > 0);  // NOLINT
      if (cur_channel_ == 0) {
        for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
          std::vector<Record> vec_data;
          multi_output_channel_[i]->Close();
          multi_output_channel_[i]->ReadAll(vec_data);
          slots_shuffle_original_data_.reserve(
              slots_shuffle_original_data_.size() + vec_data.size());
          slots_shuffle_original_data_.insert(
              slots_shuffle_original_data_.end(),
              std::make_move_iterator(vec_data.begin()),
              std::make_move_iterator(vec_data.end()));
          vec_data.clear();
          vec_data.shrink_to_fit();
          multi_output_channel_[i]->Clear();
        }
      } else {
        for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
          std::vector<Record> vec_data;
          multi_consume_channel_[i]->Close();
          multi_consume_channel_[i]->ReadAll(vec_data);
          slots_shuffle_original_data_.reserve(
              slots_shuffle_original_data_.size() + vec_data.size());
          slots_shuffle_original_data_.insert(
              slots_shuffle_original_data_.end(),
              std::make_move_iterator(vec_data.begin()),
              std::make_move_iterator(vec_data.end()));
          vec_data.clear();
          vec_data.shrink_to_fit();
          multi_consume_channel_[i]->Clear();
        }
      }
    }
  } else {
    // if already have original data for slots shuffle, clear channel
    input_channel_->Clear();
    if (cur_channel_ == 0) {
      for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
        if (!multi_output_channel_[i]) {
          continue;
        }
        multi_output_channel_[i]->Clear();
      }
    } else {
      for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
        if (!multi_consume_channel_[i]) {
          continue;
        }
        multi_consume_channel_[i]->Clear();
      }
    }
  }
  int end_size = 0;
  if (cur_channel_ == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      if (!multi_output_channel_[i]) {
        continue;
      }
      end_size += multi_output_channel_[i]->Size();
    }
  } else {
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      if (!multi_consume_channel_[i]) {
        continue;
      }
      end_size += multi_consume_channel_[i]->Size();
    }
  }
  CHECK(input_channel_->Size() == 0)
      << "input channel should be empty before slots shuffle";
  std::vector<Record> random_data;
  random_data.clear();
  // get slots shuffled random_data
  GetRandomData(index_slots, &random_data);
  input_channel_->Open();
  input_channel_->Write(std::move(random_data));
  random_data.clear();
  random_data.shrink_to_fit();
  input_channel_->Close();

  timeline.Pause();
  VLOG(2) << "DatasetImpl<T>::SlotsShuffle() end"
          << ", memory data size for slots shuffle=" << input_channel_->Size()
          << ", cost time=" << timeline.ElapsedSec() << " seconds";
}

D
dongdaxiang 已提交
931 932
}  // end namespace framework
}  // end namespace paddle