layer.h 6.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

X
Xin Pan 已提交
17
#include <map>
18 19
#include <string>
#include <vector>
M
minqiyang 已提交
20

21 22 23 24 25
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"

M
minqiyang 已提交
26 27
#include "paddle/fluid/imperative/type_defs.h"

28 29 30
namespace paddle {
namespace imperative {

X
Xin Pan 已提交
31 32
namespace py = ::pybind11;

X
Xin Pan 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
class PreparedOp {
 public:
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             framework::OperatorWithKernel::OpKernelFunc func,
             platform::DeviceContext* dev_ctx)
      : op(op), ctx(ctx), func(func), dev_ctx(dev_ctx) {}

  static PreparedOp Prepare(const framework::RuntimeContext& ctx,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto* dev_ctx = pool.Get(place);

    // check if op[type] has kernel registered.
    auto& all_op_kernels = op.AllOpKernels();
    auto kernels_iter = all_op_kernels.find(op.Type());
    if (kernels_iter == all_op_kernels.end()) {
      PADDLE_THROW(
          "There are no kernels which are registered in the %s operator.",
          op.Type());
    }

    framework::OperatorWithKernel::OpKernelMap& kernels = kernels_iter->second;

    auto expected_kernel_key = op.GetExpectedKernelType(
X
Xin Pan 已提交
59
        framework::ExecutionContext(op, framework::Scope(), *dev_ctx, ctx));
X
Xin Pan 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

    auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
    // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
    if (kernel_iter == kernels.end() &&
        expected_kernel_key.library_type_ == framework::LibraryType::kMKLDNN) {
      VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
      expected_kernel_key.library_type_ = framework::LibraryType::kPlain;
      expected_kernel_key.data_layout_ = framework::DataLayout::kAnyLayout;
      kernel_iter = kernels.find(expected_kernel_key);
    }
#endif
    if (kernel_iter == kernels.end()) {
      PADDLE_THROW("op %s does not have kernel for %s", op.Type(),
                   KernelTypeToString(expected_kernel_key));
    }
    return PreparedOp(op, ctx, kernel_iter->second, dev_ctx);
  }

  const framework::OperatorBase& op;
  const framework::RuntimeContext& ctx;
  framework::OperatorWithKernel::OpKernelFunc func;
  platform::DeviceContext* dev_ctx;
};
X
polish  
Xin Pan 已提交
85

86 87
class OpBase;

M
minqiyang 已提交
88 89 90 91 92
/* The wrapper for Variable which holds a Variable and a VarBase of its
 * gradient. This object should be managed totally by Python intepreter.
 *
 * Nearly all interface should be implemented in C++.
 */
93 94
class VarBase {
 public:
95
  VarBase() : VarBase(new framework::Variable(), new VarBase(true)) {}
X
polish  
Xin Pan 已提交
96 97

  // Owns `var` and `grad`
98
  VarBase(framework::Variable* var, VarBase* grad)
M
minqiyang 已提交
99
      : pre_op_(nullptr),
100
        pre_op_out_name_(),
M
minqiyang 已提交
101 102
        pre_op_out_idx_(-1),
        var_desc_(nullptr),
X
polish  
Xin Pan 已提交
103 104
        var_(var),
        grads_(grad),
M
minqiyang 已提交
105 106 107
        stop_gradient_(false) {}

  explicit VarBase(bool stop_gradient)
108
      : pre_op_(nullptr),
109
        pre_op_out_name_(),
110 111
        pre_op_out_idx_(-1),
        var_desc_(nullptr),
X
Xin Pan 已提交
112
        var_(new framework::Variable()),
M
minqiyang 已提交
113
        grads_(stop_gradient ? nullptr : new VarBase(true)),
114
        stop_gradient_(stop_gradient) {}
115

M
minqiyang 已提交
116 117 118 119 120 121 122 123 124
  virtual ~VarBase() {
    if (var_) {
      delete var_;
    }

    if (grads_) {
      delete grads_;
    }
  }
125

X
Xin Pan 已提交
126
  void RunBackward();
127

M
minqiyang 已提交
128
  framework::LoDTensor& GradValue();
129

M
minqiyang 已提交
130 131 132 133 134 135 136
  inline std::string GradName() const {
    PADDLE_ENFORCE(
        var_desc_,
        "Couldn't get gradient variable's name, please call backward() first");
    return string::Sprintf("%s@IGrad", var_desc_->Name());
  }

137
  OpBase* pre_op_;
X
Xin Pan 已提交
138
  std::string pre_op_out_name_;
139 140 141
  int pre_op_out_idx_;

  framework::VarDesc* var_desc_;
M
minqiyang 已提交
142

M
minqiyang 已提交
143 144
  framework::Variable* var_;
  VarBase* grads_;
145 146

  bool stop_gradient_;
147 148
};

M
minqiyang 已提交
149 150 151
/* The wrapper for OpDesc which holds a OpDesc and a OpDesc of its
 * gradient. This object should be managed totally by Python intepreter.
 */
152 153
class OpBase {
 public:
X
Xin Pan 已提交
154 155 156
  OpBase()
      : op_desc_(nullptr),
        forward_id_(-1),
X
polish  
Xin Pan 已提交
157
        grad_op_desc_(nullptr),
X
Xin Pan 已提交
158
        backward_id_(-1) {}
159 160 161 162 163

  virtual ~OpBase() {
    if (grad_op_desc_) delete grad_op_desc_;
  }

X
Xin Pan 已提交
164
  std::map<std::string, std::vector<VarBase*>> ApplyGrad();
165

X
polish  
Xin Pan 已提交
166 167
  // One of `op_desc_` or `forward_id_` is set, not both.
  // For pure python PyLayer, use `forward_id_`, otherwise, use op_desc_.
168
  framework::OpDesc* op_desc_;
X
Xin Pan 已提交
169
  int forward_id_;
X
polish  
Xin Pan 已提交
170 171
  // When has backward, one of `grad_op_desc_` or `backward_id_` is set,
  // not both.
172
  framework::OpDesc* grad_op_desc_;
X
Xin Pan 已提交
173
  int backward_id_;
X
Xin Pan 已提交
174

M
minqiyang 已提交
175 176 177
  VarBasePtrMap input_vars_;
  VarBasePtrMap output_vars_;
  OpBasePtrMap pre_ops_;
X
Xin Pan 已提交
178
  std::map<std::string, std::vector<int>> pre_ops_out_idx_;
179

M
minqiyang 已提交
180 181
  framework::VariableValueMap grad_input_vars_;
  framework::VariableValueMap grad_output_vars_;
182 183 184 185 186 187 188 189 190 191 192
  framework::BlockDesc* block_;
};

class Layer {
 public:
  virtual ~Layer() {}

  virtual std::vector<VarBase> Forward(const std::vector<VarBase>& inputs) {
    std::vector<VarBase> vars;
    return vars;
  }
X
Xin Pan 已提交
193
};
194

X
Xin Pan 已提交
195 196 197 198
class PyLayer {
 public:
  virtual ~PyLayer() {}

X
Xin Pan 已提交
199
  static void RegisterFunc(int func_id, const py::object& py_func);
X
Xin Pan 已提交
200

X
polish  
Xin Pan 已提交
201 202
  static int NumFuncs();

X
Xin Pan 已提交
203
  static std::vector<VarBase*> Apply(int func_id,
X
Xin Pan 已提交
204 205
                                     const std::vector<VarBase*>& inputs);

X
polish  
Xin Pan 已提交
206 207
  static std::vector<framework::Variable*> ApplyGrad(
      int func_id, const std::vector<framework::Variable*>& inputs);
208

X
polish  
Xin Pan 已提交
209 210 211
 private:
  static std::vector<framework::Variable*> CallPythonFunc(
      const py::object& callable, const std::vector<framework::Variable*>& ins);
212 213 214 215
};

}  // namespace imperative
}  // namespace paddle