layer.h 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

X
Xin Pan 已提交
17
#include <map>
18 19
#include <string>
#include <vector>
M
minqiyang 已提交
20

21 22 23 24 25
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"

M
minqiyang 已提交
26 27
#include "paddle/fluid/imperative/type_defs.h"

28 29 30
namespace paddle {
namespace imperative {

X
Xin Pan 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
class PreparedOp {
 public:
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             framework::OperatorWithKernel::OpKernelFunc func,
             platform::DeviceContext* dev_ctx)
      : op(op), ctx(ctx), func(func), dev_ctx(dev_ctx) {}

  static PreparedOp Prepare(const framework::RuntimeContext& ctx,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto* dev_ctx = pool.Get(place);

    // check if op[type] has kernel registered.
    auto& all_op_kernels = op.AllOpKernels();
    auto kernels_iter = all_op_kernels.find(op.Type());
    if (kernels_iter == all_op_kernels.end()) {
      PADDLE_THROW(
          "There are no kernels which are registered in the %s operator.",
          op.Type());
    }

    framework::OperatorWithKernel::OpKernelMap& kernels = kernels_iter->second;

    auto expected_kernel_key = op.GetExpectedKernelType(
X
Xin Pan 已提交
57
        framework::ExecutionContext(op, framework::Scope(), *dev_ctx, ctx));
X
Xin Pan 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

    auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
    // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
    if (kernel_iter == kernels.end() &&
        expected_kernel_key.library_type_ == framework::LibraryType::kMKLDNN) {
      VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
      expected_kernel_key.library_type_ = framework::LibraryType::kPlain;
      expected_kernel_key.data_layout_ = framework::DataLayout::kAnyLayout;
      kernel_iter = kernels.find(expected_kernel_key);
    }
#endif
    if (kernel_iter == kernels.end()) {
      PADDLE_THROW("op %s does not have kernel for %s", op.Type(),
                   KernelTypeToString(expected_kernel_key));
    }
    return PreparedOp(op, ctx, kernel_iter->second, dev_ctx);
  }

  const framework::OperatorBase& op;
  const framework::RuntimeContext& ctx;
  framework::OperatorWithKernel::OpKernelFunc func;
  platform::DeviceContext* dev_ctx;
};
X
polish  
Xin Pan 已提交
83

84 85
class OpBase;

M
minqiyang 已提交
86 87 88 89 90
/* The wrapper for Variable which holds a Variable and a VarBase of its
 * gradient. This object should be managed totally by Python intepreter.
 *
 * Nearly all interface should be implemented in C++.
 */
91 92
class VarBase {
 public:
M
minqiyang 已提交
93 94 95 96 97
  VarBase()
      : pre_op_(nullptr),
        pre_op_out_idx_(-1),
        var_desc_(nullptr),
        var_(new framework::Variable()),
M
minqiyang 已提交
98
        grads_(new VarBase(true)),
M
minqiyang 已提交
99 100 101
        stop_gradient_(false) {}

  explicit VarBase(bool stop_gradient)
102 103 104
      : pre_op_(nullptr),
        pre_op_out_idx_(-1),
        var_desc_(nullptr),
X
Xin Pan 已提交
105
        var_(new framework::Variable()),
M
minqiyang 已提交
106
        grads_(stop_gradient ? nullptr : new VarBase(true)),
107
        stop_gradient_(stop_gradient) {}
108

M
minqiyang 已提交
109 110 111 112 113 114 115 116 117
  virtual ~VarBase() {
    if (var_) {
      delete var_;
    }

    if (grads_) {
      delete grads_;
    }
  }
118

X
Xin Pan 已提交
119
  void RunBackward();
120

M
minqiyang 已提交
121
  framework::LoDTensor& GradValue();
122

M
minqiyang 已提交
123 124 125 126 127 128 129
  inline std::string GradName() const {
    PADDLE_ENFORCE(
        var_desc_,
        "Couldn't get gradient variable's name, please call backward() first");
    return string::Sprintf("%s@IGrad", var_desc_->Name());
  }

130
  OpBase* pre_op_;
X
Xin Pan 已提交
131
  std::string pre_op_out_name_;
132 133 134
  int pre_op_out_idx_;

  framework::VarDesc* var_desc_;
M
minqiyang 已提交
135

M
minqiyang 已提交
136 137
  framework::Variable* var_;
  VarBase* grads_;
138 139

  bool stop_gradient_;
140 141
};

M
minqiyang 已提交
142 143 144
/* The wrapper for OpDesc which holds a OpDesc and a OpDesc of its
 * gradient. This object should be managed totally by Python intepreter.
 */
145 146
class OpBase {
 public:
X
Xin Pan 已提交
147
  OpBase() : op_desc_(nullptr), grad_op_desc_(nullptr) {}
148 149 150 151 152

  virtual ~OpBase() {
    if (grad_op_desc_) delete grad_op_desc_;
  }

X
Xin Pan 已提交
153
  std::map<std::string, std::vector<VarBase*>> ApplyGrad();
154 155 156

  framework::OpDesc* op_desc_;
  framework::OpDesc* grad_op_desc_;
X
Xin Pan 已提交
157

M
minqiyang 已提交
158 159 160
  VarBasePtrMap input_vars_;
  VarBasePtrMap output_vars_;
  OpBasePtrMap pre_ops_;
X
Xin Pan 已提交
161
  std::map<std::string, std::vector<int>> pre_ops_out_idx_;
162

M
minqiyang 已提交
163 164
  framework::VariableValueMap grad_input_vars_;
  framework::VariableValueMap grad_output_vars_;
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
  framework::BlockDesc* block_;
};

class Layer {
 public:
  virtual ~Layer() {}

  virtual std::vector<VarBase> Forward(const std::vector<VarBase>& inputs) {
    std::vector<VarBase> vars;
    return vars;
  }

  virtual void Backward() { LOG(ERROR) << "To support customize"; }
};

}  // namespace imperative
}  // namespace paddle