test_quantization_pass.py 15.2 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
#     http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.

import unittest
import random
import numpy as np
import paddle.fluid as fluid
import six
W
WangZhen 已提交
20
import paddle
21
from paddle.fluid.framework import IrGraph
22
from paddle.fluid.contrib.slim.quantization import QuantizationTransformPass
W
WangZhen 已提交
23
from paddle.fluid.contrib.slim.quantization import QuantizationFreezePass
24 25
from paddle.fluid.contrib.slim.quantization import ConvertToInt8Pass
from paddle.fluid.contrib.slim.quantization import TransformForMobilePass
W
WangZhen 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
from paddle.fluid import core


def linear_fc(num):
    data = fluid.layers.data(name='image', shape=[1, 32, 32], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    hidden = data
    for _ in six.moves.xrange(num):
        hidden = fluid.layers.fc(hidden, size=128, act='relu')
    loss = fluid.layers.cross_entropy(input=hidden, label=label)
    loss = fluid.layers.mean(loss)
    return loss


def residual_block(num):
    def conv_bn_layer(input,
                      ch_out,
                      filter_size,
                      stride,
                      padding,
                      act='relu',
                      bias_attr=False):
        tmp = fluid.layers.conv2d(
            input=input,
            filter_size=filter_size,
            num_filters=ch_out,
            stride=stride,
            padding=padding,
            act=None,
            bias_attr=bias_attr)
        return fluid.layers.batch_norm(input=tmp, act=act)

    data = fluid.layers.data(name='image', shape=[1, 32, 32], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    hidden = data
    for _ in six.moves.xrange(num):
        conv = conv_bn_layer(hidden, 16, 3, 1, 1, act=None, bias_attr=True)
        short = conv_bn_layer(hidden, 16, 1, 1, 0, act=None)
        hidden = fluid.layers.elementwise_add(x=conv, y=short, act='relu')
    fc = fluid.layers.fc(input=hidden, size=10)
    loss = fluid.layers.cross_entropy(input=fc, label=label)
    loss = fluid.layers.mean(loss)
    return loss


W
WangZhen 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
def conv_net(img, label):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=img,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu")
    conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu")
    prediction = fluid.layers.fc(input=conv_pool_2, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_loss = fluid.layers.mean(loss)
    return avg_loss


93
class TestQuantizationTransformPass(unittest.TestCase):
W
WangZhen 已提交
94 95 96 97 98 99
    def setUp(self):
        self.quantizable_op_and_inputs = {
            'conv2d': ['Input', 'Filter'],
            'depthwise_conv2d': ['Input', 'Filter'],
            'mul': ['X', 'Y']
        }
100
        self.quantizable_grad_op_inputs = {
W
WangZhen 已提交
101 102 103 104 105
            'conv2d_grad': ['Input', 'Filter'],
            'depthwise_conv2d_grad': ['Input', 'Filter'],
            'mul_grad': ['X', 'Y']
        }

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    def check_program(self, transform_pass, program):
        quantized_ops = set()
        for block in program.blocks:
            for op in block.ops:
                # check forward
                if op.type in self.quantizable_op_and_inputs:
                    for arg_name in op.input_arg_names:
                        self.assertTrue(
                            arg_name.endswith('.quantized.dequantized'))
                        quantized_ops.add(arg_name)

            for op in block.ops:
                # check backward
                if op.type in self.quantizable_grad_op_inputs:
                    for pname in self.quantizable_grad_op_inputs[op.type]:
                        arg_name = op.input(pname)[0]
                        self.assertTrue(
                            arg_name.endswith('.quantized.dequantized'))
                        self.assertTrue(arg_name in quantized_ops)

W
WangZhen 已提交
126 127 128 129 130 131 132
    def linear_fc_quant(self, quant_type):
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
            loss = linear_fc(3)
            opt = fluid.optimizer.Adam(learning_rate=0.001)
            opt.minimize(loss)
133 134
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
135
        graph = IrGraph(core.Graph(main.desc), for_test=False)
136 137
        transform_pass = QuantizationTransformPass(
            scope=fluid.global_scope(),
138
            place=place,
139 140
            activation_quantize_type=quant_type)
        transform_pass.apply(graph)
W
WangZhen 已提交
141
        marked_nodes = set()
142
        for op in graph.all_op_nodes():
W
WangZhen 已提交
143 144
            if op.name().find('quantize') > -1:
                marked_nodes.add(op)
145 146 147
        graph.draw('.', 'quantize_fc_' + quant_type, marked_nodes)
        program = graph.to_program()
        self.check_program(transform_pass, program)
148
        val_graph = IrGraph(core.Graph(program.desc), for_test=False)
149
        val_marked_nodes = set()
150
        for op in val_graph.all_op_nodes():
151 152 153
            if op.name().find('quantize') > -1:
                val_marked_nodes.add(op)
        val_graph.draw('.', 'val_fc_' + quant_type, val_marked_nodes)
W
WangZhen 已提交
154

155
    def test_linear_fc_quant_abs_max(self):
W
WangZhen 已提交
156 157 158
        self.act_quant_op_type = 'fake_quantize_abs_max'
        self.linear_fc_quant('abs_max')

159
    def test_linear_fc_quant_range_abs_max(self):
W
WangZhen 已提交
160 161 162 163 164 165 166 167 168 169
        self.act_quant_op_type = 'fake_quantize_range_abs_max'
        self.linear_fc_quant('range_abs_max')

    def residual_block_quant(self, quant_type):
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
            loss = residual_block(2)
            opt = fluid.optimizer.Adam(learning_rate=0.001)
            opt.minimize(loss)
170 171
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
172
        graph = IrGraph(core.Graph(main.desc), for_test=False)
173 174
        transform_pass = QuantizationTransformPass(
            scope=fluid.global_scope(),
175
            place=place,
176 177
            activation_quantize_type=quant_type)
        transform_pass.apply(graph)
W
WangZhen 已提交
178
        marked_nodes = set()
179
        for op in graph.all_op_nodes():
W
WangZhen 已提交
180 181
            if op.name().find('quantize') > -1:
                marked_nodes.add(op)
182 183 184
        graph.draw('.', 'quantize_residual_' + quant_type, marked_nodes)
        program = graph.to_program()
        self.check_program(transform_pass, program)
185
        val_graph = IrGraph(core.Graph(program.desc), for_test=False)
186
        val_marked_nodes = set()
187
        for op in val_graph.all_op_nodes():
188 189 190
            if op.name().find('quantize') > -1:
                val_marked_nodes.add(op)
        val_graph.draw('.', 'val_residual_' + quant_type, val_marked_nodes)
W
WangZhen 已提交
191

192
    def test_residual_block_abs_max(self):
W
WangZhen 已提交
193 194 195
        self.act_quant_op_type = 'fake_quantize_abs_max'
        self.residual_block_quant('abs_max')

196
    def test_residual_block_range_abs_max(self):
W
WangZhen 已提交
197 198 199 200
        self.act_quant_op_type = 'fake_quantize_range_abs_max'
        self.residual_block_quant('range_abs_max')


W
WangZhen 已提交
201 202
class TestQuantizationFreezePass(unittest.TestCase):
    def freeze_graph(self, use_cuda, seed, quant_type):
W
WangZhen 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
        def build_program(main, startup, is_test):
            main.random_seed = seed
            startup.random_seed = seed
            with fluid.unique_name.guard():
                with fluid.program_guard(main, startup):
                    img = fluid.layers.data(
                        name='image', shape=[1, 28, 28], dtype='float32')
                    label = fluid.layers.data(
                        name='label', shape=[1], dtype='int64')
                    loss = conv_net(img, label)
                    if not is_test:
                        opt = fluid.optimizer.Adam(learning_rate=0.001)
                        opt.minimize(loss)
            return [img, label], loss

        random.seed(0)
        np.random.seed(0)

        main = fluid.Program()
        startup = fluid.Program()
        test_program = fluid.Program()
        feeds, loss = build_program(main, startup, False)
        build_program(test_program, startup, True)
        test_program = test_program.clone(for_test=True)
        main_graph = IrGraph(core.Graph(main.desc), for_test=False)
W
WangZhen 已提交
228
        test_graph = IrGraph(core.Graph(test_program.desc), for_test=True)
W
WangZhen 已提交
229 230 231

        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
        exe = fluid.Executor(place)
W
WangZhen 已提交
232 233 234
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup)
W
WangZhen 已提交
235
        transform_pass = QuantizationTransformPass(
236
            scope=scope, place=place, activation_quantize_type=quant_type)
W
WangZhen 已提交
237 238
        transform_pass.apply(main_graph)
        transform_pass.apply(test_graph)
239 240
        dev_name = '_gpu_' if use_cuda else '_cpu_'
        marked_nodes = set()
241
        for op in main_graph.all_op_nodes():
242 243 244 245
            if op.name().find('quantize') > -1:
                marked_nodes.add(op)
        main_graph.draw('.', 'main' + dev_name + quant_type, marked_nodes)
        marked_nodes = set()
246
        for op in test_graph.all_op_nodes():
247 248 249
            if op.name().find('quantize') > -1:
                marked_nodes.add(op)
        test_graph.draw('.', 'test' + dev_name + quant_type, marked_nodes)
W
WangZhen 已提交
250

251 252
        quantized_main_program = main_graph.to_program()
        quantized_test_program = test_graph.to_program()
253
        iters = 5
254
        batch_size = 8
W
WangZhen 已提交
255 256 257 258 259 260 261 262

        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.mnist.train(), buf_size=500),
            batch_size=batch_size)
        test_reader = paddle.batch(
            paddle.dataset.mnist.test(), batch_size=batch_size)
        feeder = fluid.DataFeeder(feed_list=feeds, place=place)
W
WangZhen 已提交
263
        with fluid.scope_guard(scope):
W
WangZhen 已提交
264 265
            for _ in range(iters):
                data = next(train_reader())
266 267 268
                loss_v = exe.run(program=quantized_main_program,
                                 feed=feeder.feed(data),
                                 fetch_list=[loss])
269
                print('{}: {}'.format('loss' + dev_name + quant_type, loss_v))
W
WangZhen 已提交
270

271 272 273 274 275 276 277 278 279 280 281 282 283
        test_data = next(test_reader())
        with fluid.program_guard(quantized_test_program):
            w_var = fluid.framework._get_var('conv2d_1.w_0.quantized',
                                             quantized_test_program)
        # Testing
        with fluid.scope_guard(scope):
            test_loss1, w_quant = exe.run(program=quantized_test_program,
                                          feed=feeder.feed(test_data),
                                          fetch_list=[loss, w_var])

        # Freeze graph for inference, but the weight of fc/conv is still float type.
        freeze_pass = QuantizationFreezePass(scope=scope, place=place)
        freeze_pass.apply(test_graph)
W
WangZhen 已提交
284
        marked_nodes = set()
285
        for op in test_graph.all_op_nodes():
W
WangZhen 已提交
286 287
            if op.name().find('quantize') > -1:
                marked_nodes.add(op)
288 289
        test_graph.draw('.', 'test_freeze' + dev_name + quant_type,
                        marked_nodes)
W
WangZhen 已提交
290

291 292 293 294 295 296
        server_program = test_graph.to_program()
        with fluid.scope_guard(scope):
            test_loss2, = exe.run(program=server_program,
                                  feed=feeder.feed(test_data),
                                  fetch_list=[loss])
        self.assertAlmostEqual(test_loss1, test_loss2, delta=5e-3)
297 298
        print('{}: {}'.format('test_loss1' + dev_name + quant_type, test_loss1))
        print('{}: {}'.format('test_loss2' + dev_name + quant_type, test_loss2))
299 300
        w_freeze = np.array(scope.find_var('conv2d_1.w_0').get_tensor())
        # Maybe failed, this is due to the calculation precision
301
        # self.assertAlmostEqual(np.sum(w_freeze), np.sum(w_quant))
302 303 304 305
        print('{}: {}'.format('w_freeze' + dev_name + quant_type,
                              np.sum(w_freeze)))
        print('{}: {}'.format('w_quant' + dev_name + quant_type,
                              np.sum(w_quant)))
306 307 308 309 310

        # Convert parameter to 8-bit.
        convert_int8_pass = ConvertToInt8Pass(scope=scope, place=place)
        convert_int8_pass.apply(test_graph)
        marked_nodes = set()
311
        for op in test_graph.all_op_nodes():
W
WangZhen 已提交
312
            if op.name().find('quantize') > -1:
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
                marked_nodes.add(op)
        test_graph.draw('.', 'test_int8' + dev_name + quant_type, marked_nodes)
        server_program_int8 = test_graph.to_program()
        # Save the 8-bit parameter and model file.
        with fluid.scope_guard(scope):
            fluid.io.save_inference_model('server_int8' + dev_name + quant_type,
                                          ['image', 'label'], [loss], exe,
                                          server_program_int8)
            # Test whether the 8-bit parameter and model file can be loaded successfully.
            [infer, feed, fetch] = fluid.io.load_inference_model(
                'server_int8' + dev_name + quant_type, exe)
        # Check the loaded 8-bit weight.
        w_8bit = np.array(scope.find_var('conv2d_1.w_0.int8').get_tensor())
        self.assertEqual(w_8bit.dtype, np.int8)
        self.assertEqual(np.sum(w_8bit), np.sum(w_freeze))
328 329 330
        print('{}: {}'.format('w_8bit' + dev_name + quant_type, np.sum(w_8bit)))
        print('{}: {}'.format('w_freeze' + dev_name + quant_type,
                              np.sum(w_freeze)))
331 332 333 334

        mobile_pass = TransformForMobilePass()
        mobile_pass.apply(test_graph)
        marked_nodes = set()
335
        for op in test_graph.all_op_nodes():
W
WangZhen 已提交
336
            if op.name().find('quantize') > -1:
337 338 339 340 341 342 343 344 345
                marked_nodes.add(op)
        test_graph.draw('.', 'test_mobile' + dev_name + quant_type,
                        marked_nodes)

        mobile_program = test_graph.to_program()
        with fluid.scope_guard(scope):
            fluid.io.save_inference_model('mobile_int8' + dev_name + quant_type,
                                          ['image', 'label'], [loss], exe,
                                          mobile_program)
W
WangZhen 已提交
346

347
    def test_freeze_graph_cuda_dynamic(self):
W
WangZhen 已提交
348 349 350 351
        if fluid.core.is_compiled_with_cuda():
            with fluid.unique_name.guard():
                self.freeze_graph(True, seed=1, quant_type='abs_max')

352
    def test_freeze_graph_cpu_dynamic(self):
W
WangZhen 已提交
353 354
        with fluid.unique_name.guard():
            self.freeze_graph(False, seed=2, quant_type='abs_max')
W
WangZhen 已提交
355

356
    def test_freeze_graph_cuda_static(self):
W
WangZhen 已提交
357 358
        if fluid.core.is_compiled_with_cuda():
            with fluid.unique_name.guard():
W
WangZhen 已提交
359
                self.freeze_graph(True, seed=1, quant_type='range_abs_max')
W
WangZhen 已提交
360

361
    def test_freeze_graph_cpu_static(self):
W
WangZhen 已提交
362
        with fluid.unique_name.guard():
W
WangZhen 已提交
363
            self.freeze_graph(False, seed=2, quant_type='range_abs_max')
W
WangZhen 已提交
364 365


W
WangZhen 已提交
366 367
if __name__ == '__main__':
    unittest.main()