test_pipeline.py 7.1 KB
Newer Older
H
hutuxian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import numpy as np
import os
import shutil
import unittest
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
import math


def conv_bn_layer(input, num_filters, filter_size, stride=1, groups=1,
                  act=None):
    conv = fluid.layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
        stride=stride,
        padding=(filter_size - 1) // 2,
        groups=groups,
        act=None,
        bias_attr=False)
    return fluid.layers.batch_norm(
        input=conv,
        act=act, )


def shortcut(input, ch_out, stride, is_first):
    ch_in = input.shape[1]
    if ch_in != ch_out or stride != 1 or is_first == True:
        return conv_bn_layer(input, ch_out, 1, stride)
    else:
        return input


def bottleneck_block(input, num_filters, stride):
    conv0 = conv_bn_layer(
        input=input, num_filters=num_filters, filter_size=1, act='relu')
    conv1 = conv_bn_layer(
        input=conv0,
        num_filters=num_filters,
        filter_size=3,
        stride=stride,
        act='relu')
    conv2 = conv_bn_layer(
        input=conv1, num_filters=num_filters * 4, filter_size=1, act=None)

    short = shortcut(input, num_filters * 4, stride, is_first=False)

    return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')


def basic_block(input, num_filters, stride, is_first):
    conv0 = conv_bn_layer(
        input=input,
        num_filters=num_filters,
        filter_size=3,
        act='relu',
        stride=stride)
    conv1 = conv_bn_layer(
        input=conv0, num_filters=num_filters, filter_size=3, act=None)
    short = shortcut(input, num_filters, stride, is_first)
    return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')


def build_network(input, layers=50, class_dim=1000):
    supported_layers = [18, 34, 50, 101, 152]
    assert layers in supported_layers
    depth = None
    if layers == 18:
        depth = [2, 2, 2, 2]
    elif layers == 34 or layers == 50:
        depth = [3, 4, 6, 3]
    elif layers == 101:
        depth = [3, 4, 23, 3]
    elif layers == 152:
        depth = [3, 8, 36, 3]
    num_filters = [64, 128, 256, 512]
    with fluid.device_guard("cpu"):
        conv = conv_bn_layer(
            input=input, num_filters=64, filter_size=7, stride=2, act='relu')
        conv = fluid.layers.pool2d(
            input=conv,
            pool_size=3,
            pool_stride=2,
            pool_padding=1,
            pool_type='max')
    if layers >= 50:
        for block in range(len(depth)):
            with fluid.device_guard("cpu"):
                for i in range(depth[block]):
                    conv = bottleneck_block(
                        input=conv,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1)

        with fluid.device_guard("gpu:0"):
            pool = fluid.layers.pool2d(
                input=conv, pool_size=7, pool_type='avg', global_pooling=True)
            stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
            out = fluid.layers.fc(
                input=pool,
                size=class_dim,
                param_attr=fluid.param_attr.ParamAttr(
                    initializer=fluid.initializer.Uniform(-stdv, stdv)))
    else:
        for block in range(len(depth)):
            with fluid.device_guard("cpu"):
                for i in range(depth[block]):
                    conv = basic_block(
                        input=conv,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        is_first=block == i == 0)
        with fluid.device_guard("gpu:0"):
            pool = fluid.layers.pool2d(
                input=conv, pool_size=7, pool_type='avg', global_pooling=True)
            stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
            out = fluid.layers.fc(
                input=pool,
                size=class_dim,
                param_attr=fluid.param_attr.ParamAttr(
                    initializer=fluid.initializer.Uniform(-stdv, stdv)))
    return out
138 139


H
hutuxian 已提交
140 141 142 143
class TestPipeline(unittest.TestCase):
    """  TestCases for Pipeline Training. """

    def test_pipeline(self):
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        with fluid.device_guard("cpu"):
            image = fluid.layers.data(
                name="image", shape=[3, 224, 224], dtype="float32")
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            data_loader = fluid.io.DataLoader.from_generator(
                feed_list=[image, label],
                capacity=64,
                use_double_buffer=True,
                iterable=False)
            fc = build_network(image, layers=50)
        with fluid.device_guard("gpu:0"):
            out, prob = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label, return_softmax=True)
            loss = fluid.layers.mean(out)
            acc_top1 = fluid.layers.accuracy(input=prob, label=label, k=1)
            acc_top5 = fluid.layers.accuracy(input=prob, label=label, k=5)

        base_lr = 0.1
        passes = [30, 60, 80, 90]
        total_images = 1281167
        steps_per_pass = total_images // 128
        bd = [steps_per_pass * p for p in passes]
        lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
        lr_val = fluid.layers.piecewise_decay(boundaries=bd, values=lr)
        optimizer = fluid.optimizer.Momentum(
            lr_val,
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(1e-4))
H
hutuxian 已提交
172
        optimizer = fluid.optimizer.PipelineOptimizer(
173
            optimizer, num_microbatches=2)
H
hutuxian 已提交
174
        optimizer.minimize(loss)
175 176 177

    def test_pipeline_noneoptimizer(self):
        with fluid.device_guard("gpu:0"):
H
hutuxian 已提交
178 179 180 181 182 183 184 185 186 187
            x = fluid.layers.data(
                name='x', shape=[1], dtype='int64', lod_level=0)
            y = fluid.layers.data(
                name='y', shape=[1], dtype='int64', lod_level=0)
            emb_x = layers.embedding(
                input=x,
                param_attr=fluid.ParamAttr(name="embx"),
                size=[10, 2],
                is_sparse=False)

188
            fc = layers.fc(input=emb_x,
H
hutuxian 已提交
189 190 191 192 193 194
                           name="fc",
                           size=1,
                           num_flatten_dims=1,
                           bias_attr=False)
            loss = layers.reduce_mean(fc)

195 196
        optimizer = fluid.optimizer.SGD(learning_rate=0.5)
        with self.assertRaises(ValueError):
H
hutuxian 已提交
197
            optimizer = fluid.optimizer.PipelineOptimizer(
198
                dict(), num_microbatches=2)
H
hutuxian 已提交
199

H
hutuxian 已提交
200 201 202

if __name__ == '__main__':
    unittest.main()