collective.py 3.7 KB
Newer Older
K
kuizhiqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import tempfile
K
kuizhiqing 已提交
16
from paddle.distributed.fleet import launch_utils
17 18
from paddle.distributed.fleet import cloud_utils
from paddle.distributed.fleet import ascend_utils
K
kuizhiqing 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

from paddle.distributed.fleet.launch_utils import *

from paddle.distributed.fleet.elastic.manager import LauncherInterface


class CollectiveLauncher(LauncherInterface):
    def __init__(self, args):
        self.args = args
        self.procs = []

    def launch(self):
        logger.info("collective lauchner launch ...")
        args = self.args
        # parse arguments, used for cloud-single-machine and local
        (device_mode,
         devices_per_proc) = launch_utils.get_device_proc_info(args)
        trainers_num = cloud_utils.get_trainers_num()
        logger.debug("parsed from args trainerss_num:{} mode:{} devices:{}".
                     format(trainers_num, device_mode, devices_per_proc))

        cluster = None
        pod = None

        start_port = 6170
        if os.environ.get('FLAGS_START_PORT') is not None:
            start_port = os.environ.get('FLAGS_START_PORT')
        if cloud_utils.use_paddlecloud() and trainers_num != 1:
            cluster, pod = cloud_utils.get_cloud_cluster(
                args.ips, device_mode, devices_per_proc, start_port)
            logger.debug("get cluster from cloud:{}".format(cluster))
        elif device_mode == DeviceMode.ASCEND_NPU:
            # for ascend
            cluster, pod = ascend_utils.get_cloud_cluster(
                rank_table_file=os.getenv("RANK_TABLE_FILE", None),
                device_mode=device_mode,
                start_port=start_port)
        else:
            # trainers_num = 1 or not use paddlecloud ips="a,b"
            cluster, pod = paddle.distributed.fleet.launch.get_cluster_from_args(
                args, device_mode, devices_per_proc)
            logger.debug("get cluster from args:{}".format(cluster))

        global_envs = copy.copy(os.environ.copy())
        self.gloo_rendezvous_dir = tempfile.mkdtemp()
        # add gloo env
        global_envs["PADDLE_WITH_GLOO"] = str(
            os.getenv("PADDLE_WITH_GLOO", "0"))
        global_envs["PADDLE_GLOO_RENDEZVOUS"] = "3"
        global_envs["PADDLE_GLOO_FS_PATH"] = self.gloo_rendezvous_dir

        self.procs = start_local_trainers(
            cluster,
            pod,
            training_script=args.training_script,
            training_script_args=args.training_script_args,
            log_dir=args.log_dir,
            envs=global_envs)

        for idx, proc in enumerate(self.procs):
            logger.info("launch proc_id:{} idx:{}".format(proc.proc.pid, idx))

    def stop(self):
        logger.info("collective lauchner stop ...")
        if not self._terminate_procs():
            logger.error("kill process failed")
        if os.path.exists(self.gloo_rendezvous_dir):
            shutil.rmtree(self.gloo_rendezvous_dir)

    def watch(self):
        logger.debug("collective lauchner watch ...")
        for p in self.procs:
            if p.log_fn and p.local_rank == 0:
                pull_worker_log(p)
        ret = self._check_procs()
        return ret