# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile from paddle.distributed.fleet import launch_utils from paddle.distributed.fleet import cloud_utils from paddle.distributed.fleet import ascend_utils from paddle.distributed.fleet.launch_utils import * from paddle.distributed.fleet.elastic.manager import LauncherInterface class CollectiveLauncher(LauncherInterface): def __init__(self, args): self.args = args self.procs = [] def launch(self): logger.info("collective lauchner launch ...") args = self.args # parse arguments, used for cloud-single-machine and local (device_mode, devices_per_proc) = launch_utils.get_device_proc_info(args) trainers_num = cloud_utils.get_trainers_num() logger.debug("parsed from args trainerss_num:{} mode:{} devices:{}". format(trainers_num, device_mode, devices_per_proc)) cluster = None pod = None start_port = 6170 if os.environ.get('FLAGS_START_PORT') is not None: start_port = os.environ.get('FLAGS_START_PORT') if cloud_utils.use_paddlecloud() and trainers_num != 1: cluster, pod = cloud_utils.get_cloud_cluster( args.ips, device_mode, devices_per_proc, start_port) logger.debug("get cluster from cloud:{}".format(cluster)) elif device_mode == DeviceMode.ASCEND_NPU: # for ascend cluster, pod = ascend_utils.get_cloud_cluster( rank_table_file=os.getenv("RANK_TABLE_FILE", None), device_mode=device_mode, start_port=start_port) else: # trainers_num = 1 or not use paddlecloud ips="a,b" cluster, pod = paddle.distributed.fleet.launch.get_cluster_from_args( args, device_mode, devices_per_proc) logger.debug("get cluster from args:{}".format(cluster)) global_envs = copy.copy(os.environ.copy()) self.gloo_rendezvous_dir = tempfile.mkdtemp() # add gloo env global_envs["PADDLE_WITH_GLOO"] = str( os.getenv("PADDLE_WITH_GLOO", "0")) global_envs["PADDLE_GLOO_RENDEZVOUS"] = "3" global_envs["PADDLE_GLOO_FS_PATH"] = self.gloo_rendezvous_dir self.procs = start_local_trainers( cluster, pod, training_script=args.training_script, training_script_args=args.training_script_args, log_dir=args.log_dir, envs=global_envs) for idx, proc in enumerate(self.procs): logger.info("launch proc_id:{} idx:{}".format(proc.proc.pid, idx)) def stop(self): logger.info("collective lauchner stop ...") if not self._terminate_procs(): logger.error("kill process failed") if os.path.exists(self.gloo_rendezvous_dir): shutil.rmtree(self.gloo_rendezvous_dir) def watch(self): logger.debug("collective lauchner watch ...") for p in self.procs: if p.log_fn and p.local_rank == 0: pull_worker_log(p) ret = self._check_procs() return ret