tensor.py 10.0 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
from ..layer_helper import LayerHelper
16
from ..param_attr import ParamAttr
X
xuwei06 已提交
17 18 19 20
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
from ..core import DataType
import numpy
Y
Yu Yang 已提交
21 22

__all__ = [
23 24 25 26 27 28 29 30 31 32
    'create_tensor',
    'create_parameter',
    'cast',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'ones',
    'zeros',
Y
Yu Yang 已提交
33 34 35
]


36
def create_tensor(dtype, name=None):
Y
Yu Yang 已提交
37 38 39 40
    helper = LayerHelper("create_tensor", **locals())
    return helper.create_variable(name=helper.name, dtype=dtype)


41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
def create_parameter(shape,
                     dtype,
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
    Create a parameter
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
        Parameter: the created parameter
    """
    helper = LayerHelper("create_parameter")
    if attr is None:
        attr = ParamAttr()
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


68
def cast(x, dtype):
Y
Yu Yang 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    """
    This function takes in the input with input_dtype
    and casts it to the output_dtype as the output.
    """
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


84
def concat(input, axis=0):
Y
Yu Yang 已提交
85
    """
86 87 88
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
89
    and returns that as the output.
90 91 92 93 94 95 96 97 98 99 100

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
          out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
101 102 103 104 105 106 107 108 109 110 111
    """
    helper = LayerHelper('concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


112
def sums(input, out=None):
K
kavyasrinet 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    """This function performs the sum operation on the input and returns the
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.

    Returns:
        Variable: The tensor type variable that has the sum of input
                  written to it.

    Examples:
        .. code-block::python

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          a0 = layers.array_read(array=tmp, i=i)
          i = layers.increment(x=i)
          a1 = layers.array_read(array=tmp, i=i)
          mean_a0 = layers.mean(x=a0)
          mean_a1 = layers.mean(x=a1)
          a_sum = layers.sums(input=[mean_a0, mean_a1])
Y
Yu Yang 已提交
135 136 137 138 139 140 141 142
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
    return out


143
def assign(input, output):
144 145 146 147 148 149
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
150
        input(Variable|numpy.ndarray): The source variable
151 152 153 154 155 156 157 158 159 160 161
        output(Variable): The destination variable

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
162
    helper = LayerHelper('assign', **locals())
X
xuwei06 已提交
163 164 165 166 167 168 169 170 171 172
    if isinstance(input, Variable):
        helper.append_op(
            type='scale',
            inputs={'X': [input]},
            outputs={'Out': [output]},
            attrs={'scale': 1.0})
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
        if dtype == DataType.FP32:
            value_name = "fp32_values"
173
            values = [float(v) for v in input.flat]
X
xuwei06 已提交
174 175
        elif dtype == DataType.INT32:
            value_name = "int32_values"
176
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
177 178
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
179 180 181
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
182 183 184 185 186 187 188

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
189
                value_name: values
X
xuwei06 已提交
190 191 192 193
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
194 195 196
    return output


Q
QI JUN 已提交
197
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
198
    """
199 200
    **fill_constant**

201 202
    This function creates a tensor with specified `shape` and `dtype`, and
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
203

204
    The attribute `stop_gradient` of the created tensor is set to True.
205 206

    Args:
207 208 209 210
        shape(tuple|list|None): Shape of the output tensor.
        dtype(np.dtype|core.DataType|str): Data type of the output tensor.
        value(float): The constant value used to initialize the output tensor.
        out(Variable): The output tensor.
211 212

    Returns:
213
        Variable: The tensor variable storing the output.
214 215 216 217 218

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
219
    """
220

Y
Yu Yang 已提交
221 222 223 224 225 226 227
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
228 229 230 231 232 233
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'force_cpu': force_cpu
        })
Y
Yu Yang 已提交
234 235 236 237 238 239 240 241 242
    out.stop_gradient = True
    return out


def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
243
                                  output_dim_idx=0):
244 245 246
    """
    **fill_constant_batch_size_like**

K
kavyasrinet 已提交
247 248 249
    This function creates a tensor of specified *shape*, *dtype* and batch size,
    and initializes this with a constant supplied in *value*. The batch size is
    obtained from the `input` tensor.
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

    It also sets *stop_gradient* to True.

    Args:
        input(Variable): Tensor whose dimensions will be used to get batch size
        shape(tuple|list|None): Shape of output tensor
        dtype(np.dtype|core.DataType|str): Data type of output tensor
        value(float): Constant value to initialize the output tensor
        input_dim_idx(int): Index of input's batch size dimension
        output_dim_idx(int): Index of output's batch size dimension

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

267 268
          data = fluid.layers.fill_constant_batch_size_like(
              input=like, shape=[1], value=0, dtype='int64')
269
    """
Y
Yu Yang 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


287
def ones(shape, dtype):
Y
Yu Yang 已提交
288
    """
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
        dtype(np.dtype|core.DataType|str): Data type of output tensor

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
307 308 309 310
    """
    return fill_constant(value=1.0, **locals())


311
def zeros(shape, dtype):
Y
Yu Yang 已提交
312
    """
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
        dtype(np.dtype|core.DataType|str): Data type of output tensor

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
331 332
    """
    return fill_constant(value=0.0, **locals())