tensor.py 10.0 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
Y
Yu Yang 已提交
14
from ..layer_helper import LayerHelper
15
from ..param_attr import ParamAttr
X
xuwei06 已提交
16 17 18 19
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
from ..core import DataType
import numpy
Y
Yu Yang 已提交
20 21

__all__ = [
22 23 24 25 26 27 28 29 30 31
    'create_tensor',
    'create_parameter',
    'cast',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'ones',
    'zeros',
Y
Yu Yang 已提交
32 33 34
]


35
def create_tensor(dtype, name=None):
Y
Yu Yang 已提交
36 37 38 39
    helper = LayerHelper("create_tensor", **locals())
    return helper.create_variable(name=helper.name, dtype=dtype)


40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
def create_parameter(shape,
                     dtype,
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
    Create a parameter
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
        Parameter: the created parameter
    """
    helper = LayerHelper("create_parameter")
    if attr is None:
        attr = ParamAttr()
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


67
def cast(x, dtype):
Y
Yu Yang 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    """
    This function takes in the input with input_dtype
    and casts it to the output_dtype as the output.
    """
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


83
def concat(input, axis=0):
Y
Yu Yang 已提交
84
    """
85 86 87
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
88
    and returns that as the output.
89 90 91 92 93 94 95 96 97 98 99

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
          out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
100 101 102 103 104 105 106 107 108 109 110
    """
    helper = LayerHelper('concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


111
def sums(input, out=None):
K
kavyasrinet 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    """This function performs the sum operation on the input and returns the
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.

    Returns:
        Variable: The tensor type variable that has the sum of input
                  written to it.

    Examples:
        .. code-block::python

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          a0 = layers.array_read(array=tmp, i=i)
          i = layers.increment(x=i)
          a1 = layers.array_read(array=tmp, i=i)
          mean_a0 = layers.mean(x=a0)
          mean_a1 = layers.mean(x=a1)
          a_sum = layers.sums(input=[mean_a0, mean_a1])
Y
Yu Yang 已提交
134 135 136 137 138 139 140 141
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
    return out


142
def assign(input, output):
143 144 145 146 147 148
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
149
        input(Variable|numpy.ndarray): The source variable
150 151 152 153 154 155 156 157 158 159 160
        output(Variable): The destination variable

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
161
    helper = LayerHelper('assign', **locals())
X
xuwei06 已提交
162 163 164 165 166 167 168 169 170 171
    if isinstance(input, Variable):
        helper.append_op(
            type='scale',
            inputs={'X': [input]},
            outputs={'Out': [output]},
            attrs={'scale': 1.0})
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
        if dtype == DataType.FP32:
            value_name = "fp32_values"
172
            values = [float(v) for v in input.flat]
X
xuwei06 已提交
173 174
        elif dtype == DataType.INT32:
            value_name = "int32_values"
175
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
176 177
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
178 179 180
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
181 182 183 184 185 186 187

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
188
                value_name: values
X
xuwei06 已提交
189 190 191 192
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
193 194 195
    return output


Q
QI JUN 已提交
196
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
197
    """
198 199
    **fill_constant**

200 201
    This function creates a tensor with specified `shape` and `dtype`, and
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
202

203
    The attribute `stop_gradient` of the created tensor is set to True.
204 205

    Args:
206 207 208 209
        shape(tuple|list|None): Shape of the output tensor.
        dtype(np.dtype|core.DataType|str): Data type of the output tensor.
        value(float): The constant value used to initialize the output tensor.
        out(Variable): The output tensor.
210 211

    Returns:
212
        Variable: The tensor variable storing the output.
213 214 215 216 217

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
218
    """
219

Y
Yu Yang 已提交
220 221 222 223 224 225 226
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
227 228 229 230 231 232
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'force_cpu': force_cpu
        })
Y
Yu Yang 已提交
233 234 235 236 237 238 239 240 241
    out.stop_gradient = True
    return out


def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
242
                                  output_dim_idx=0):
243 244 245
    """
    **fill_constant_batch_size_like**

K
kavyasrinet 已提交
246 247 248
    This function creates a tensor of specified *shape*, *dtype* and batch size,
    and initializes this with a constant supplied in *value*. The batch size is
    obtained from the `input` tensor.
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265

    It also sets *stop_gradient* to True.

    Args:
        input(Variable): Tensor whose dimensions will be used to get batch size
        shape(tuple|list|None): Shape of output tensor
        dtype(np.dtype|core.DataType|str): Data type of output tensor
        value(float): Constant value to initialize the output tensor
        input_dim_idx(int): Index of input's batch size dimension
        output_dim_idx(int): Index of output's batch size dimension

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

266 267
          data = fluid.layers.fill_constant_batch_size_like(
              input=like, shape=[1], value=0, dtype='int64')
268
    """
Y
Yu Yang 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


286
def ones(shape, dtype):
Y
Yu Yang 已提交
287
    """
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
        dtype(np.dtype|core.DataType|str): Data type of output tensor

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
306 307 308 309
    """
    return fill_constant(value=1.0, **locals())


310
def zeros(shape, dtype):
Y
Yu Yang 已提交
311
    """
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
        dtype(np.dtype|core.DataType|str): Data type of output tensor

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
330 331
    """
    return fill_constant(value=0.0, **locals())