gpu_launch_config.h 8.3 KB
Newer Older
W
Wilber 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Used for compute gpu launch parameter config

#pragma once

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)

#ifdef PADDLE_WITH_CUDA
#include <cuda_runtime.h>
#else
#include <hip/hip_runtime.h>
#endif

#include <stddef.h>
28

W
Wilber 已提交
29 30 31
#include <algorithm>
#include <string>
#include <vector>
32

33
#include "glog/logging.h"
34
#include "paddle/phi/backends/gpu/gpu_context.h"
35
#include "paddle/phi/core/enforce.h"
W
Wilber 已提交
36 37 38 39 40

#ifdef __HIPCC__
// HIP results in error or nan if > 256
#define PREDEFINED_BLOCK_SIZE 256
#else
41
// CUDA performs better when thread_per_block is between [64, 512]
W
Wilber 已提交
42 43 44
#define PREDEFINED_BLOCK_SIZE 512
#endif

45
namespace phi {
W
Wilber 已提交
46 47 48
namespace backends {
namespace gpu {

49 50 51 52
template <typename T = int64_t>
inline T DivUp(T a, T b) {
  return (a + b - 1) / b;
}
W
Wilber 已提交
53

54 55 56
// https://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
//   for round integer value into next highest power of 2.
inline int64_t RoundToPowerOfTwo(int64_t n) {
W
Wilber 已提交
57 58 59 60 61 62
  n--;
  n |= (n >> 1);
  n |= (n >> 2);
  n |= (n >> 4);
  n |= (n >> 8);
  n |= (n >> 16);
63
  int64_t min_val = 32;
W
Wilber 已提交
64
#ifdef __HIPCC__
65
  int64_t max_val = 256;
W
Wilber 已提交
66
#else
67
  int64_t max_val = 1024;
W
Wilber 已提交
68
#endif
69
  return std::min(max_val, std::max(min_val, (n + 1)));
W
Wilber 已提交
70 71 72 73 74
}

#ifdef WITH_NV_JETSON
// The number of threads cannot be assigned 1024 in some cases when the device
// is nano or tx2 .
75
inline void ChangeThreadNum(const phi::GPUContext& context,
W
Wilber 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
                            int* num_thread,
                            int alternative_num_thread = 512) {
  if (context.GetComputeCapability() == 53 ||
      context.GetComputeCapability() == 62) {
    *num_thread = alternative_num_thread;
  }
}
#endif

struct GpuLaunchConfig {
 public:
  GpuLaunchConfig() {}

  size_t GetThreadNum() const { return GetBlockSize() * GetGridSize(); }

  size_t GetGridSize() const {
    return block_per_grid.x * block_per_grid.y * block_per_grid.z;
  }

  size_t GetBlockSize() const {
    return thread_per_block.x * thread_per_block.y * thread_per_block.z;
  }

  int compute_capability = 0;
  dim3 thread_per_block = dim3(1, 1, 1);
  dim3 block_per_grid = dim3(1, 1, 1);
};

/* According to NVIDIA, if number of threads per block is 64/128/256/512,
105 106 107
 * cuda performs better. And number of blocks should be greater (at least
 * 2x~4x) than number of SMs. Hence, SM count is took into account within
 * this function to determine the right number of threads per block. */
108
inline GpuLaunchConfig GetGpuLaunchConfig1D(const phi::GPUContext& context,
W
Wilber 已提交
109 110
                                            int64_t numel,
                                            int vec_size = 1) {
111 112 113
  PADDLE_ENFORCE_GE(numel,
                    0,
                    phi::errors::InvalidArgument(
114 115
                        "numel is expected to be greater than or equal 0,"
                        " but received %d.",
116
                        numel));
117 118 119 120 121
  PADDLE_ENFORCE_GE(
      vec_size,
      1,
      phi::errors::InvalidArgument(
          "vec_size is expected greater than 0, but received %d.", vec_size));
W
Wilber 已提交
122 123
  // Get compute_capability
  const int capability = context.GetComputeCapability();
124
  // If thread number per block is 64/128/256/512, cuda performs better.
W
Wilber 已提交
125 126 127 128 129 130 131 132 133
  int limit_threads =
      std::min(PREDEFINED_BLOCK_SIZE, context.GetMaxThreadsPerBlock());
#ifdef WITH_NV_JETSON
  if (capability == 53 || capability == 62) {
    limit_threads = 512;
  }
#endif
  int threads = limit_threads;
  int sm_count = context.GetSMCount();
134
  int64_t active_threads_num = numel / vec_size;
W
Wilber 已提交
135 136 137 138 139 140 141 142 143 144 145
  if (active_threads_num / (sm_count << 1) < limit_threads) {
    // Round up threads number into an exponential multiple of 2, while number
    // of acitve blocks is about twice of SM, to acquire better performance.
    threads = RoundToPowerOfTwo(active_threads_num / (sm_count << 1));
  } else if (active_threads_num / (sm_count << 2) < limit_threads) {
    // Round up threads number into an exponential multiple of 2, while number
    // of acitve blocks is about 4 times of SM, to acquire better performance.
    threads = RoundToPowerOfTwo(active_threads_num / (sm_count << 2));
  }
  // Number of threads per block shall be larger than 64.
  threads = std::max(64, threads);
146
  int blocks = DivUp<int64_t>(DivUp<int64_t>(numel, vec_size), threads);
147 148 149 150
  int limit_blocks = context.GetCUDAMaxGridDimSize()[0];
  if (blocks > limit_blocks) {
    blocks = limit_blocks;
  }
W
Wilber 已提交
151 152 153 154 155

  GpuLaunchConfig config;
  config.thread_per_block.x = threads;
  config.block_per_grid.x = blocks;
  config.compute_capability = capability;
156 157 158 159 160

  VLOG(3) << "Get 1-D launch config: numel=" << numel
          << ", vec_size=" << vec_size << ", block_size=" << threads
          << ", grid_size=" << blocks << ", limit_blocks=" << limit_blocks
          << ", limit_threads=" << limit_threads;
W
Wilber 已提交
161 162 163
  return config;
}

164
inline GpuLaunchConfig GetGpuLaunchConfig2D(const phi::GPUContext& context,
W
Wilber 已提交
165 166
                                            int x_dim,
                                            int y_dim) {
167 168 169 170 171 172 173 174 175 176 177 178
  PADDLE_ENFORCE_GT(
      x_dim,
      0,
      phi::errors::InvalidArgument("x dim number should greater than 0,"
                                   " but received value is: %d",
                                   x_dim));
  PADDLE_ENFORCE_GT(
      y_dim,
      0,
      phi::errors::InvalidArgument("y dim number should greater than 0,"
                                   " but received value is: %d",
                                   y_dim));
W
Wilber 已提交
179 180

  const int kThreadsPerBlock = 256;
181 182
  int block_cols = std::min(x_dim, kThreadsPerBlock);
  int block_rows = std::max(kThreadsPerBlock / block_cols, 1);
W
Wilber 已提交
183 184

  int max_physical_threads = context.GetMaxPhysicalThreadCount();
185
  const int max_blocks = std::max(max_physical_threads / kThreadsPerBlock, 1);
W
Wilber 已提交
186 187 188 189 190

  GpuLaunchConfig config;
  // Noticed, block size is not align to 32, if needed do it yourself.
  config.thread_per_block = dim3(block_cols, block_rows, 1);

191 192
  int grid_x = std::min(DivUp<int>(x_dim, block_cols), max_blocks);
  int grid_y = std::min(max_blocks / grid_x, std::max(y_dim / block_rows, 1));
W
Wilber 已提交
193 194 195 196 197

  config.block_per_grid = dim3(grid_x, grid_y, 1);
  return config;
}

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
static inline int GetLastPow2(int n) {
  n |= (n >> 1);
  n |= (n >> 2);
  n |= (n >> 4);
  n |= (n >> 8);
  n |= (n >> 16);
  return std::max(1, n - (n >> 1));
}

inline GpuLaunchConfig GetGpuLaunchConfig3D(const phi::GPUContext& context,
                                            int num_img,
                                            int height,
                                            int width) {
  const int kThreadsPerBlock = 256;
  int max_threads_per_block = context.GetMaxThreadsPerBlock();  // 1024
  int max_threads = std::min(kThreadsPerBlock, max_threads_per_block);

  int block_x = std::min(GetLastPow2(width), max_threads);
  int block_y = std::min(GetLastPow2(height), max_threads / block_x);
  int block_z = std::min(num_img, max_threads / block_x / block_y);

219 220 221 222
  std::array<int, 3> max_grid_dim = context.GetCUDAMaxGridDimSize();
  int grid_x = std::min(max_grid_dim[0], DivUp<int>(width, block_x));
  int grid_y = std::min(max_grid_dim[1], DivUp<int>(height, block_y));
  int grid_z = std::min(max_grid_dim[2], DivUp<int>(num_img, block_z * 4));
223 224 225 226 227 228 229 230 231

  const int capability = context.GetComputeCapability();
  GpuLaunchConfig config;
  config.compute_capability = capability;
  config.thread_per_block = dim3(block_x, block_y, block_z);
  config.block_per_grid = dim3(grid_x, grid_y, grid_z);
  return config;
}

232 233 234 235 236 237 238 239
template <typename Context>
void LimitGridDim(const Context& ctx, dim3* grid_dim) {
  auto max_grid_dim =
      reinterpret_cast<const phi::GPUContext&>(ctx).GetCUDAMaxGridDimSize();
  grid_dim->x = grid_dim->x < max_grid_dim[0] ? grid_dim->x : max_grid_dim[0];
  grid_dim->y = grid_dim->y < max_grid_dim[1] ? grid_dim->y : max_grid_dim[1];
  grid_dim->z = grid_dim->z < max_grid_dim[2] ? grid_dim->z : max_grid_dim[2];
}
W
Wilber 已提交
240 241
}  // namespace gpu
}  // namespace backends
242
}  // namespace phi
W
Wilber 已提交
243 244

#endif