gpu_launch_config.h 6.1 KB
Newer Older
W
Wilber 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Used for compute gpu launch parameter config

#pragma once

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)

#ifdef PADDLE_WITH_CUDA
#include <cuda_runtime.h>
#else
#include <hip/hip_runtime.h>
#endif

#include <stddef.h>
#include <algorithm>
#include <string>
#include <vector>
31
#include "paddle/phi/backends/gpu/gpu_context.h"
W
Wilber 已提交
32 33 34 35 36 37 38 39 40 41

#ifdef __HIPCC__
// HIP results in error or nan if > 256
#define PREDEFINED_BLOCK_SIZE 256
#else
/* CUDA performs better as thread_per_block
   num is between [64, 512] */
#define PREDEFINED_BLOCK_SIZE 512
#endif

42
namespace phi {
W
Wilber 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
namespace backends {
namespace gpu {

inline int DivUp(int a, int b) { return (a + b - 1) / b; }

/* https://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
   for round integer value into next highest power of 2. */
static inline int RoundToPowerOfTwo(int n) {
  n--;
  n |= (n >> 1);
  n |= (n >> 2);
  n |= (n >> 4);
  n |= (n >> 8);
  n |= (n >> 16);
#ifdef __HIPCC__
  return std::min(256, std::max(32, (n + 1)));
#else
  return std::min(1024, std::max(32, (n + 1)));
#endif
}

#ifdef WITH_NV_JETSON
// The number of threads cannot be assigned 1024 in some cases when the device
// is nano or tx2 .
67
inline void ChangeThreadNum(const phi::GPUContext& context,
W
Wilber 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
                            int* num_thread,
                            int alternative_num_thread = 512) {
  if (context.GetComputeCapability() == 53 ||
      context.GetComputeCapability() == 62) {
    *num_thread = alternative_num_thread;
  }
}
#endif

struct GpuLaunchConfig {
 public:
  GpuLaunchConfig() {}

  size_t GetThreadNum() const { return GetBlockSize() * GetGridSize(); }

  size_t GetGridSize() const {
    return block_per_grid.x * block_per_grid.y * block_per_grid.z;
  }

  size_t GetBlockSize() const {
    return thread_per_block.x * thread_per_block.y * thread_per_block.z;
  }

  int compute_capability = 0;
  dim3 thread_per_block = dim3(1, 1, 1);
  dim3 block_per_grid = dim3(1, 1, 1);
};

/* According to NVIDIA, if number of threads per block is 64/128/256/512,
  * cuda performs better. And number of blocks should be greater (at least
  * 2x~4x) than number of SMs. Hence, SM count is took into account within
  * this function to determine the right number of threads per block. */
100
inline GpuLaunchConfig GetGpuLaunchConfig1D(const phi::GPUContext& context,
W
Wilber 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
                                            int64_t numel,
                                            int vec_size = 1) {
  PADDLE_ENFORCE_GT(numel,
                    0,
                    paddle::platform::errors::InvalidArgument(
                        "element quantity should be greater than 0,"
                        " but received value is: %d.",
                        numel));
  // Get compute_capability
  const int capability = context.GetComputeCapability();
  /* If thread number per block is 64/128/256/512, cuda performs better.*/
  int limit_threads =
      std::min(PREDEFINED_BLOCK_SIZE, context.GetMaxThreadsPerBlock());
#ifdef WITH_NV_JETSON
  if (capability == 53 || capability == 62) {
    limit_threads = 512;
  }
#endif
  int threads = limit_threads;
  int sm_count = context.GetSMCount();
  int active_threads_num = numel / vec_size;
  if (active_threads_num / (sm_count << 1) < limit_threads) {
    // Round up threads number into an exponential multiple of 2, while number
    // of acitve blocks is about twice of SM, to acquire better performance.
    threads = RoundToPowerOfTwo(active_threads_num / (sm_count << 1));
  } else if (active_threads_num / (sm_count << 2) < limit_threads) {
    // Round up threads number into an exponential multiple of 2, while number
    // of acitve blocks is about 4 times of SM, to acquire better performance.
    threads = RoundToPowerOfTwo(active_threads_num / (sm_count << 2));
  }
  // Number of threads per block shall be larger than 64.
  threads = std::max(64, threads);
  int blocks = DivUp(DivUp(numel, vec_size), threads);

  GpuLaunchConfig config;
  config.thread_per_block.x = threads;
  config.block_per_grid.x = blocks;
  config.compute_capability = capability;
  return config;
}

142
inline GpuLaunchConfig GetGpuLaunchConfig2D(const phi::GPUContext& context,
W
Wilber 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
                                            int x_dim,
                                            int y_dim) {
  PADDLE_ENFORCE_GT(x_dim,
                    0,
                    paddle::platform::errors::InvalidArgument(
                        "x dim number should greater than 0,"
                        " but received value is: %d",
                        x_dim));
  PADDLE_ENFORCE_GT(y_dim,
                    0,
                    paddle::platform::errors::InvalidArgument(
                        "y dim number should greater than 0,"
                        " but received value is: %d",
                        y_dim));

  const int kThreadsPerBlock = 256;
  int block_cols = (std::min)(x_dim, kThreadsPerBlock);
  int block_rows = (std::max)(kThreadsPerBlock / block_cols, 1);

  int max_physical_threads = context.GetMaxPhysicalThreadCount();
  const int max_blocks = (std::max)(max_physical_threads / kThreadsPerBlock, 1);

  GpuLaunchConfig config;
  // Noticed, block size is not align to 32, if needed do it yourself.
  config.thread_per_block = dim3(block_cols, block_rows, 1);

  int grid_x = (std::min)(DivUp(x_dim, block_cols), max_blocks);
  int grid_y =
      (std::min)(max_blocks / grid_x, (std::max)(y_dim / block_rows, 1));

  config.block_per_grid = dim3(grid_x, grid_y, 1);
  return config;
}

}  // namespace gpu
}  // namespace backends
179
}  // namespace phi
W
Wilber 已提交
180 181

#endif