pool_op.cc 9.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/pool_op.h"

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
int OutputSizePool(int input_size, int filter_size, int padding, int stride) {
21 22 23 24 25 26 27 28 29
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

class PoolOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
30 31 32 33 34 35 36 37 38 39 40 41
  void InferShape(framework::InferShapeContextBase *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "X(Input) of Pooling should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Out(Output) of Pooling should not be null.");

    auto in_x_dims = ctx->GetInputDim("X");

    std::string pooling_type = ctx->Attrs().Get<std::string>("poolingType");
    std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
42

C
chengduoZH 已提交
43 44
    PADDLE_ENFORCE(pooling_type == "max" || pooling_type == "avg",
                   "pooling_type should be 'max' or 'avg'");
45
    PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
46
                   "Pooling intput should be 4-D or 5-D");
47

48 49
    if (ctx->Attrs().Get<bool>("globalPooling")) {
      ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
50
      for (size_t i = 0; i < ksize.size(); ++i)
51
        ksize[i] = static_cast<int>(in_x_dims[i + 2]);
52 53
    }

54
    PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2,
55
                   "Input size and Pooling size should be consistent.");
C
chengduoZH 已提交
56 57 58 59 60 61
    PADDLE_ENFORCE(ksize.size() == 2 || ksize.size() == 3,
                   "Pooling size should be 2 elements. or 3 elements.");
    PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
                      "strides size and pooling size should be the same.");
    PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
                      "paddings size and pooling size should be the same.");
62

63
    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
64
    for (size_t i = 0; i < ksize.size(); ++i) {
65 66
      output_shape.push_back(
          OutputSizePool(in_x_dims[i + 2], ksize[i], paddings[i], strides[i]));
67
    }
68
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
69 70 71 72 73 74 75 76
  }
};

class PoolOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
77 78 79 80 81 82 83
  void InferShape(framework::InferShapeContextBase *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "X(Input) of Pooling should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Input@Grad of Pooling should not be null.");

    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
84 85 86
  }
};

C
chengduoZH 已提交
87
class Pool2dOpMaker : public framework::OpProtoAndCheckerMaker {
88
 public:
C
chengduoZH 已提交
89
  Pool2dOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
90 91
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
92
        "X",
93
        "The input tensor of pooling operator. "
C
chengduoZH 已提交
94
        "The format of input tensor is NCHW. Where N is batch size, C is the "
C
chengduoZH 已提交
95
        "number of channels, H and W is the height and width of feature.");
96
    AddOutput("Out",
97
              "The output tensor of pooling operator."
C
chengduoZH 已提交
98
              "The format of output tensor is also NCHW.");
99

100
    AddAttr<std::string>("poolingType",
C
chengduoZH 已提交
101
                         "poolingType of pooling operator."
C
chengduoZH 已提交
102
                         "str constant equal to 'max' or 'avg'");
103
    AddAttr<std::vector<int>>(
104 105 106 107
        "ksize",
        "Pooling size(depth, height, width) of pooling operator."
        "If globalPooling = true, ksize is ignored and need not be specified.");
    AddAttr<bool>(
C
chengduoZH 已提交
108 109
        "globalPooling",
        "whether to use the globalPooling."
110 111 112 113
        "int constant equal to false or true"
        "default false"
        "If globalPooling = true, ksize is ignored and need not be specified.")
        .SetDefault(false);
C
chengduoZH 已提交
114 115 116
    AddAttr<std::vector<int>>("strides",
                              "strides(height, width) of pooling operator."
                              "default {1,1}")
C
chengduoZH 已提交
117 118
        .SetDefault({1, 1})
        .AddCustomChecker(GreaterThanChecker_pool({0, 0}));
C
chengduoZH 已提交
119 120 121
    AddAttr<std::vector<int>>("paddings",
                              "paddings(height, width) of pooling operator."
                              "default {0,0}")
C
chengduoZH 已提交
122 123
        .SetDefault({0, 0})
        .AddCustomChecker(EqualGreaterThanChecker_pool({0, 0}));
124
    AddComment(R"DOC(
C
chengduoZH 已提交
125
The pooling2d operation calculates the output based on
126
the input, poolingType and ksize, strides, paddings parameters.
127 128
)DOC");
  }
C
chengduoZH 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

 private:
  struct GreaterThanChecker_pool {
   public:
    explicit GreaterThanChecker_pool(std::vector<int> lower_bound)
        : lower_bound_(lower_bound) {}
    void operator()(std::vector<int> &value) const {
      PADDLE_ENFORCE(value.size() == lower_bound_.size(), "equal check fails.");
      for (size_t i = 0; i < value.size(); ++i) {
        PADDLE_ENFORCE(value[i] > lower_bound_[i], "larger_than check fails.");
      }
    }

   private:
    std::vector<int> lower_bound_;
  };

  struct EqualGreaterThanChecker_pool {
   public:
    explicit EqualGreaterThanChecker_pool(std::vector<int> lower_bound)
        : lower_bound_(lower_bound) {}
    void operator()(std::vector<int> &value) const {
      PADDLE_ENFORCE(value.size() == lower_bound_.size(), "equal check fails.");
      for (size_t i = 0; i < value.size(); ++i) {
        PADDLE_ENFORCE(value[i] >= lower_bound_[i], "larger_than check fails.");
      }
    }

   private:
    std::vector<int> lower_bound_;
  };
160
};
C
chengduoZH 已提交
161
class Pool3dOpMaker : public framework::OpProtoAndCheckerMaker {
162
 public:
C
chengduoZH 已提交
163
  Pool3dOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
164
      : OpProtoAndCheckerMaker(proto, op_checker) {
C
chengduoZH 已提交
165 166 167 168 169
    AddInput("X",
             "The input tensor of pooling operator. "
             "The format of input tensor is NCDHW. Where N is batch size, C is "
             "the "
             "number of channels, D, H and W is the depth, height and width of "
C
chengduoZH 已提交
170
             "feature.");
171
    AddOutput("Out",
172
              "The output tensor of pooling operator."
C
chengduoZH 已提交
173
              "The format of output tensor is also NCDHW.");
174

175
    AddAttr<std::string>("poolingType",
C
chengduoZH 已提交
176
                         "poolingType of pooling operator."
C
chengduoZH 已提交
177
                         "str constant equal to 'max' or 'avg'");
178
    AddAttr<std::vector<int>>(
179 180 181 182
        "ksize",
        "pooling size(depth, height, width) of pooling operator."
        "If globalPooling = true, ksize is ignored and need not be specified.");
    AddAttr<bool>(
C
chengduoZH 已提交
183 184
        "globalPooling",
        "whether to use the globalPooling."
185 186 187 188
        "int constant equal to false or true"
        "default false"
        "If globalPooling = true, ksize is ignored and need not be specified.")
        .SetDefault(false);
C
chengduoZH 已提交
189 190 191 192
    AddAttr<std::vector<int>>(
        "strides",
        "strides(depth, height, width) of pooling operator."
        "default {1,1,1}")
C
chengduoZH 已提交
193 194
        .SetDefault({1, 1, 1})
        .AddCustomChecker(GreaterThanChecker_pool({0, 0, 0}));
C
chengduoZH 已提交
195 196 197 198
    AddAttr<std::vector<int>>(
        "paddings",
        "paddings(depth, height, width) of pooling operator."
        "default {0,0,0}")
C
chengduoZH 已提交
199 200
        .SetDefault({0, 0, 0})
        .AddCustomChecker(EqualGreaterThanChecker_pool({0, 0, 0}));
201
    AddComment(R"DOC(
C
chengduoZH 已提交
202
The pooling3d operation calculates the output based on
203
the input, poolingType and ksize, strides, paddings parameters.
204 205
)DOC");
  }
C
chengduoZH 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

 private:
  struct GreaterThanChecker_pool {
   public:
    explicit GreaterThanChecker_pool(std::vector<int> lower_bound)
        : lower_bound_(lower_bound) {}
    void operator()(std::vector<int> &value) const {
      PADDLE_ENFORCE(value.size() == lower_bound_.size(), "equal check fails.");
      for (size_t i = 0; i < value.size(); ++i) {
        PADDLE_ENFORCE(value[i] > lower_bound_[i], "larger_than check fails.");
      }
    }

   private:
    std::vector<int> lower_bound_;
  };

  struct EqualGreaterThanChecker_pool {
   public:
    explicit EqualGreaterThanChecker_pool(std::vector<int> lower_bound)
        : lower_bound_(lower_bound) {}
    void operator()(std::vector<int> &value) const {
      PADDLE_ENFORCE(value.size() == lower_bound_.size(), "equal check fails.");
      for (size_t i = 0; i < value.size(); ++i) {
        PADDLE_ENFORCE(value[i] >= lower_bound_[i], "larger_than check fails.");
      }
    }

   private:
    std::vector<int> lower_bound_;
  };
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP(pool2d, ops::PoolOp, ops::Pool2dOpMaker, pool2d_grad,
            ops::PoolOpGrad);

REGISTER_OP_CPU_KERNEL(pool2d,
                       ops::PoolKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(pool2d_grad,
                       ops::PoolGradKernel<paddle::platform::CPUPlace, float>)

REGISTER_OP(pool3d, ops::PoolOp, ops::Pool3dOpMaker, pool3d_grad,
            ops::PoolOpGrad);

REGISTER_OP_CPU_KERNEL(pool3d,
                       ops::PoolKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(pool3d_grad,
                       ops::PoolGradKernel<paddle::platform::CPUPlace, float>);