test_scatter_op.py 12.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
zchen0211 已提交
17
import unittest
Q
qijun 已提交
18
import numpy as np
Z
Zeng Jinle 已提交
19
import os
S
ShenLiang 已提交
20 21
import paddle
import paddle.fluid as fluid
22
from op_test import OpTest
23
import paddle.fluid.core as core
Z
Zeng Jinle 已提交
24
from paddle.fluid.dygraph.base import switch_to_static_graph
Z
zchen0211 已提交
25 26


Q
qijun 已提交
27
class TestScatterOp(OpTest):
Z
zchen0211 已提交
28
    def setUp(self):
Q
qijun 已提交
29
        self.op_type = "scatter"
H
hong 已提交
30
        self.python_api = paddle.scatter
31
        ref_np = np.ones((3, 50)).astype("float32")
Q
qijun 已提交
32
        index_np = np.array([1, 2]).astype("int32")
33
        updates_np = np.random.random((2, 50)).astype("float32")
Q
qijun 已提交
34
        output_np = np.copy(ref_np)
Z
zchen0211 已提交
35
        output_np[index_np] = updates_np
D
dzhwinter 已提交
36
        self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
Z
zchen0211 已提交
37 38
        self.outputs = {'Out': output_np}

Q
qijun 已提交
39
    def test_check_output(self):
H
hong 已提交
40
        self.check_output(check_eager=True)
Z
zchen0211 已提交
41

Q
qijun 已提交
42
    def test_check_grad(self):
H
hong 已提交
43
        self.check_grad(["X", "Updates"], "Out", check_eager=True)
Z
zchen0211 已提交
44 45


46 47 48
class TestScatterOp0(OpTest):
    def setUp(self):
        self.op_type = "scatter"
H
hong 已提交
49
        self.python_api = paddle.scatter
50 51 52 53 54 55 56 57 58 59
        ref_np = np.ones((3, 3)).astype("float32")
        index_np = np.array([1, 2]).astype("int32")
        updates_np = np.random.random((2, 3)).astype("float32")
        output_np = np.copy(ref_np)
        output_np[index_np] = updates_np
        self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
        self.attrs = {'overwrite': True}
        self.outputs = {'Out': output_np}

    def test_check_output(self):
H
hong 已提交
60
        self.check_output(check_eager=True)
61 62

    def test_check_grad(self):
H
hong 已提交
63
        self.check_grad(["X", "Updates"], "Out", check_eager=True)
64 65 66 67 68


class TestScatterOp1(OpTest):
    def setUp(self):
        self.op_type = "scatter"
H
hong 已提交
69
        self.python_api = paddle.scatter
70 71 72 73 74 75 76 77 78 79 80 81 82
        ref_np = np.ones((3, 3)).astype("float32")
        zeros_np = np.zeros([2, 3]).astype('float32')
        index_np = np.array([1, 1]).astype("int32")
        updates_np = np.random.random((2, 3)).astype("float32")
        output_np = np.copy(ref_np)
        output_np[index_np] = zeros_np
        for i in range(0, len(index_np)):
            output_np[index_np[i]] += updates_np[i]
        self.attrs = {'overwrite': False}
        self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
        self.outputs = {'Out': output_np}

    def test_check_output(self):
H
hong 已提交
83
        self.check_output(check_eager=True)
84 85

    def test_check_grad(self):
H
hong 已提交
86
        self.check_grad(["X", "Updates"], "Out", check_eager=True)
87 88 89 90 91 92 93


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestScatterOp2(OpTest):
    def setUp(self):
        self.op_type = "scatter"
H
hong 已提交
94
        self.python_api = paddle.scatter
95 96 97 98 99 100 101 102 103 104 105
        ref_np = np.ones((3, 3)).astype("float32")
        index_np = np.array([1, 2]).astype("int32")
        updates_np = np.random.random((2, 3)).astype("float32")
        output_np = np.copy(ref_np)
        output_np[index_np] = updates_np
        self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
        self.outputs = {'Out': output_np}

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
H
hong 已提交
106
            self.check_output_with_place(place, atol=1e-3, check_eager=True)
107 108 109 110

    def test_check_grad(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
H
hong 已提交
111 112
            self.check_grad_with_place(
                place, ['X', 'Updates'], 'Out', check_eager=True)
113 114 115 116 117 118 119


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestScatterOp3(OpTest):
    def setUp(self):
        self.op_type = "scatter"
H
hong 已提交
120
        self.python_api = paddle.scatter
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
        ref_np = np.ones((3, 3)).astype("float32")
        zeros_np = np.zeros([2, 3]).astype('float32')
        index_np = np.array([1, 1]).astype("int32")
        updates_np = np.random.random((2, 3)).astype("float32")
        output_np = np.copy(ref_np)
        output_np[index_np] = zeros_np
        for i in range(0, len(index_np)):
            output_np[index_np[i]] += updates_np[i]
        self.attrs = {'overwrite': False}
        self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
        self.outputs = {'Out': output_np}

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
H
hong 已提交
136
            self.check_output_with_place(place, atol=1e-3, check_eager=True)
137 138 139 140

    def test_check_grad(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
H
hong 已提交
141 142
            self.check_grad_with_place(
                place, ['X', 'Updates'], 'Out', check_eager=True)
143 144


145 146 147
class TestScatterOp4(OpTest):
    def setUp(self):
        self.op_type = "scatter"
H
hong 已提交
148
        self.python_api = paddle.scatter
149 150 151 152 153 154 155 156 157
        ref_np = np.ones((3, 3)).astype("float32")
        index_np = np.array([1, 2]).astype("int64")
        updates_np = np.random.random((2, 3)).astype("float32")
        output_np = np.copy(ref_np)
        output_np[index_np] = updates_np
        self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
        self.outputs = {'Out': output_np}

    def test_check_output(self):
H
hong 已提交
158
        self.check_output(check_eager=True)
159 160

    def test_check_grad(self):
H
hong 已提交
161
        self.check_grad(['X', 'Updates'], 'Out', check_eager=True)
162 163 164 165 166 167 168


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestScatterOp5(OpTest):
    def setUp(self):
        self.op_type = "scatter"
H
hong 已提交
169
        self.python_api = paddle.scatter
170 171 172 173 174 175 176 177 178 179 180
        ref_np = np.ones((3, 3)).astype("float32")
        index_np = np.array([1, 2]).astype("int64")
        updates_np = np.random.random((2, 3)).astype("float32")
        output_np = np.copy(ref_np)
        output_np[index_np] = updates_np
        self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
        self.outputs = {'Out': output_np}

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
H
hong 已提交
181
            self.check_output_with_place(place, atol=1e-3, check_eager=True)
182 183 184 185

    def test_check_grad(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
H
hong 已提交
186 187
            self.check_grad_with_place(
                place, ['X', 'Updates'], 'Out', check_eager=True)
188 189


S
ShenLiang 已提交
190 191 192 193 194
class TestScatterAPI(unittest.TestCase):
    def setUp(self):
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))
195 196 197 198
        self.executed_api()

    def executed_api(self):
        self.scatter = paddle.scatter
S
ShenLiang 已提交
199 200 201 202 203 204

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(name="input", shape=[3, 2], dtype="float64")
            index = fluid.data(name="index", shape=[4], dtype="int64")
            updates = fluid.data(name="updates", shape=[4, 2], dtype="float64")
205
            result = self.scatter(input, index, updates, False)
S
ShenLiang 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238

            input_data = np.array([[1, 1], [2, 2], [3, 3]]).astype(np.float64)
            index_data = np.array([2, 1, 0, 1]).astype(np.int64)
            updates_data = np.array(
                [[1, 1], [2, 2], [3, 3], [4, 4]]).astype(np.float64)

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
                              feed={
                                  "input": input_data,
                                  "index": index_data,
                                  "updates": updates_data
                              },
                              fetch_list=[result])
            self.assertEqual((fetches[0] == \
                              np.array([[3., 3.],[6., 6.],[1., 1.]])).all(), True)

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                x_data = np.array([[1, 1], [2, 2], [3, 3]]).astype(np.float64)
                index_data = np.array([2, 1, 0, 1]).astype(np.int64)
                updates_data = np.array(
                    [[1, 1], [2, 2], [3, 3], [4, 4]]).astype(np.float64)

                x = fluid.dygraph.to_variable(x_data)
                index = fluid.dygraph.to_variable(index_data)
                updates = fluid.dygraph.to_variable(updates_data)

239
                output1 = self.scatter(x, index, updates, overwrite=False)
S
ShenLiang 已提交
240 241 242
                self.assertEqual((output1.numpy() == \
                                  np.array([[3., 3.],[6., 6.],[1., 1.]])).all(), True)

Z
Zeng Jinle 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    def test_large_data(self):
        if os.name == "nt" or not paddle.is_compiled_with_cuda():
            return

        x = np.random.rand(183826, 256).astype("float32")
        index = np.ones(10759233, dtype="int64")
        updates = np.ones(shape=[10759233, 256], dtype="float32")

        def test_dygraph():
            with fluid.dygraph.guard():
                gpu_out = paddle.scatter(
                    paddle.to_tensor(x),
                    paddle.to_tensor(index), paddle.to_tensor(updates))
                return gpu_out.numpy()

        @switch_to_static_graph
        def test_static_graph():
            with paddle.static.program_guard(paddle.static.Program(),
                                             paddle.static.Program()):
                x_t = paddle.static.data(name="x", dtype=x.dtype, shape=x.shape)
                index_t = paddle.static.data(
                    name="index", dtype=index.dtype, shape=index.shape)
                updates_t = paddle.static.data(
                    name="updates", dtype=updates.dtype, shape=updates.shape)
                out_t = paddle.scatter(x_t, index_t, updates_t)
                feed = {
                    x_t.name: x,
                    index_t.name: index,
                    updates_t.name: updates
                }
                fetch = [out_t]

                gpu_exe = paddle.static.Executor(paddle.CUDAPlace(0))
                gpu_value = gpu_exe.run(feed=feed, fetch_list=fetch)[0]
                return gpu_value

        self.assertTrue(np.array_equal(test_dygraph(), test_static_graph()))

S
ShenLiang 已提交
281

L
Li Min 已提交
282 283 284 285 286
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestScatterOpFp16(OpTest):
    def setUp(self):
        self.__class__.op_type = "scatter"
H
hong 已提交
287
        self.python_api = paddle.scatter
L
Li Min 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
        # compute grad in the following code handly.
        self.__class__.no_need_check_grad = True
        self.x_type = 'float16'
        self.x_np = np.ones((3, 3)).astype(self.x_type)
        self.index_np = np.array([1, 2]).astype("int32")
        self.updates_np = np.random.random((2, 3)).astype(self.x_type)
        self.output_np = np.copy(self.x_np)
        self.output_np[self.index_np] = self.updates_np
        self.dout_np = np.random.random((3, 3)).astype(self.x_type)

        # compute ref_dx
        self.ref_dx = np.copy(self.dout_np)
        zero_np = np.zeros((2, 3)).astype(self.x_type)
        self.ref_dx[self.index_np] = zero_np

    def compute_ref_grad_updates(self):
        ref_grad_updates = paddle.gather(
            paddle.to_tensor(self.dout_np), paddle.to_tensor(self.index_np))
        return ref_grad_updates

    def test_scatter_fp16(self):
        paddle.disable_static(place=paddle.CUDAPlace(0))
        x_tensor = paddle.to_tensor(self.x_np, stop_gradient=False)
        index_tensor = paddle.to_tensor(self.index_np)
        updates_tensor = paddle.to_tensor(self.updates_np, stop_gradient=False)
        out_tensor = paddle.scatter(x_tensor, index_tensor, updates_tensor)
        paddle.autograd.backward(
            [out_tensor], [paddle.to_tensor(self.dout_np)], retain_graph=True)
        ref_grad_updates = self.compute_ref_grad_updates()
        np.testing.assert_allclose(
            ref_grad_updates.numpy(),
            updates_tensor.grad.numpy(),
            rtol=1e-5,
            atol=1e-5)
        np.testing.assert_allclose(
            self.ref_dx, x_tensor.grad.numpy(), rtol=1e-5, atol=1e-5)


326 327 328 329 330
class TestScatterInplaceAPI(TestScatterAPI):
    def executed_api(self):
        self.scatter = paddle.scatter_


Z
zchen0211 已提交
331
if __name__ == "__main__":
332
    paddle.enable_static()
Z
zchen0211 已提交
333
    unittest.main()