test_scatter_op.py 8.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
zchen0211 已提交
17
import unittest
Q
qijun 已提交
18
import numpy as np
S
ShenLiang 已提交
19 20
import paddle
import paddle.fluid as fluid
21
from op_test import OpTest
22
import paddle.fluid.core as core
Z
zchen0211 已提交
23 24


Q
qijun 已提交
25
class TestScatterOp(OpTest):
Z
zchen0211 已提交
26
    def setUp(self):
Q
qijun 已提交
27
        self.op_type = "scatter"
28
        ref_np = np.ones((3, 50)).astype("float32")
Q
qijun 已提交
29
        index_np = np.array([1, 2]).astype("int32")
30
        updates_np = np.random.random((2, 50)).astype("float32")
Q
qijun 已提交
31
        output_np = np.copy(ref_np)
Z
zchen0211 已提交
32
        output_np[index_np] = updates_np
D
dzhwinter 已提交
33
        self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
Z
zchen0211 已提交
34 35
        self.outputs = {'Out': output_np}

Q
qijun 已提交
36 37
    def test_check_output(self):
        self.check_output()
Z
zchen0211 已提交
38

Q
qijun 已提交
39
    def test_check_grad(self):
S
ShenLiang 已提交
40
        self.check_grad(["X", "Updates"], "Out")
Z
zchen0211 已提交
41 42


43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
class TestScatterOp0(OpTest):
    def setUp(self):
        self.op_type = "scatter"
        ref_np = np.ones((3, 3)).astype("float32")
        index_np = np.array([1, 2]).astype("int32")
        updates_np = np.random.random((2, 3)).astype("float32")
        output_np = np.copy(ref_np)
        output_np[index_np] = updates_np
        self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
        self.attrs = {'overwrite': True}
        self.outputs = {'Out': output_np}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
S
ShenLiang 已提交
59
        self.check_grad(["X", "Updates"], "Out")
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80


class TestScatterOp1(OpTest):
    def setUp(self):
        self.op_type = "scatter"
        ref_np = np.ones((3, 3)).astype("float32")
        zeros_np = np.zeros([2, 3]).astype('float32')
        index_np = np.array([1, 1]).astype("int32")
        updates_np = np.random.random((2, 3)).astype("float32")
        output_np = np.copy(ref_np)
        output_np[index_np] = zeros_np
        for i in range(0, len(index_np)):
            output_np[index_np[i]] += updates_np[i]
        self.attrs = {'overwrite': False}
        self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
        self.outputs = {'Out': output_np}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
S
ShenLiang 已提交
81
        self.check_grad(["X", "Updates"], "Out")
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestScatterOp2(OpTest):
    def setUp(self):
        self.op_type = "scatter"
        ref_np = np.ones((3, 3)).astype("float32")
        index_np = np.array([1, 2]).astype("int32")
        updates_np = np.random.random((2, 3)).astype("float32")
        output_np = np.copy(ref_np)
        output_np[index_np] = updates_np
        self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
        self.outputs = {'Out': output_np}

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-3)

    def test_check_grad(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
S
ShenLiang 已提交
105
            self.check_grad_with_place(place, ['X', 'Updates'], 'Out')
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestScatterOp3(OpTest):
    def setUp(self):
        self.op_type = "scatter"
        ref_np = np.ones((3, 3)).astype("float32")
        zeros_np = np.zeros([2, 3]).astype('float32')
        index_np = np.array([1, 1]).astype("int32")
        updates_np = np.random.random((2, 3)).astype("float32")
        output_np = np.copy(ref_np)
        output_np[index_np] = zeros_np
        for i in range(0, len(index_np)):
            output_np[index_np[i]] += updates_np[i]
        self.attrs = {'overwrite': False}
        self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
        self.outputs = {'Out': output_np}

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-3)

    def test_check_grad(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
S
ShenLiang 已提交
133
            self.check_grad_with_place(place, ['X', 'Updates'], 'Out')
134 135


136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
class TestScatterOp4(OpTest):
    def setUp(self):
        self.op_type = "scatter"
        ref_np = np.ones((3, 3)).astype("float32")
        index_np = np.array([1, 2]).astype("int64")
        updates_np = np.random.random((2, 3)).astype("float32")
        output_np = np.copy(ref_np)
        output_np[index_np] = updates_np
        self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
        self.outputs = {'Out': output_np}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
S
ShenLiang 已提交
151
        self.check_grad(['X', 'Updates'], 'Out')
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestScatterOp5(OpTest):
    def setUp(self):
        self.op_type = "scatter"
        ref_np = np.ones((3, 3)).astype("float32")
        index_np = np.array([1, 2]).astype("int64")
        updates_np = np.random.random((2, 3)).astype("float32")
        output_np = np.copy(ref_np)
        output_np[index_np] = updates_np
        self.inputs = {'X': ref_np, 'Ids': index_np, 'Updates': updates_np}
        self.outputs = {'Out': output_np}

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-3)

    def test_check_grad(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
S
ShenLiang 已提交
175
            self.check_grad_with_place(place, ['X', 'Updates'], 'Out')
176 177


S
ShenLiang 已提交
178 179 180 181 182
class TestScatterAPI(unittest.TestCase):
    def setUp(self):
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))
183 184 185 186
        self.executed_api()

    def executed_api(self):
        self.scatter = paddle.scatter
S
ShenLiang 已提交
187 188 189 190 191 192

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(name="input", shape=[3, 2], dtype="float64")
            index = fluid.data(name="index", shape=[4], dtype="int64")
            updates = fluid.data(name="updates", shape=[4, 2], dtype="float64")
193
            result = self.scatter(input, index, updates, False)
S
ShenLiang 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

            input_data = np.array([[1, 1], [2, 2], [3, 3]]).astype(np.float64)
            index_data = np.array([2, 1, 0, 1]).astype(np.int64)
            updates_data = np.array(
                [[1, 1], [2, 2], [3, 3], [4, 4]]).astype(np.float64)

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
                              feed={
                                  "input": input_data,
                                  "index": index_data,
                                  "updates": updates_data
                              },
                              fetch_list=[result])
            self.assertEqual((fetches[0] == \
                              np.array([[3., 3.],[6., 6.],[1., 1.]])).all(), True)

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                x_data = np.array([[1, 1], [2, 2], [3, 3]]).astype(np.float64)
                index_data = np.array([2, 1, 0, 1]).astype(np.int64)
                updates_data = np.array(
                    [[1, 1], [2, 2], [3, 3], [4, 4]]).astype(np.float64)

                x = fluid.dygraph.to_variable(x_data)
                index = fluid.dygraph.to_variable(index_data)
                updates = fluid.dygraph.to_variable(updates_data)

227
                output1 = self.scatter(x, index, updates, overwrite=False)
S
ShenLiang 已提交
228 229 230 231
                self.assertEqual((output1.numpy() == \
                                  np.array([[3., 3.],[6., 6.],[1., 1.]])).all(), True)


232 233 234 235 236
class TestScatterInplaceAPI(TestScatterAPI):
    def executed_api(self):
        self.scatter = paddle.scatter_


Z
zchen0211 已提交
237 238
if __name__ == "__main__":
    unittest.main()