data_feeder.py 22.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import core
Y
Yu Yang 已提交
18
import numpy
C
chengduoZH 已提交
19
import os
20 21
import six
from six.moves import zip, range, xrange
Y
yuyang18 已提交
22
import multiprocessing
23
import warnings
Y
Yu Yang 已提交
24

25
from .framework import Variable, default_main_program, _current_expected_place
C
chengduo 已提交
26
from .framework import _cpu_num, _cuda_ids
Y
Yu Yang 已提交
27 28 29
__all__ = ['DataFeeder']


S
sneaxiy 已提交
30
def convert_dtype(dtype):
P
pkpk 已提交
31
    if isinstance(dtype, core.VarDesc.VarType):
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
        if dtype == core.VarDesc.VarType.BOOL:
            return 'bool'
        elif dtype == core.VarDesc.VarType.FP16:
            return 'float16'
        elif dtype == core.VarDesc.VarType.FP32:
            return 'float32'
        elif dtype == core.VarDesc.VarType.FP64:
            return 'float64'
        elif dtype == core.VarDesc.VarType.INT8:
            return 'int8'
        elif dtype == core.VarDesc.VarType.INT16:
            return 'int16'
        elif dtype == core.VarDesc.VarType.INT32:
            return 'int32'
        elif dtype == core.VarDesc.VarType.INT64:
            return 'int64'
        elif dtype == core.VarDesc.VarType.UINT8:
            return 'uint8'
P
pkpk 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62
    else:
        if dtype in [
                'bool', 'float16', 'float32', 'float64', 'int8', 'int16',
                'int32', 'int64', 'uint8', u'bool', u'float16', u'float32',
                u'float64', u'int8', u'int16', u'int32', u'int64', u'uint8'
        ]:
            # this code is a little bit dangerous, since error could happen
            # when casting no-asci code to str in python2.
            # but since the set itself is limited, so currently, it is good.
            # however, jointly supporting python2 and python3, (as well as python4 maybe)
            # may still be a long-lasting problem.
            return str(dtype)

63 64 65
    raise ValueError(
        "dtype must be any of [bool, float16, float32, float64, int8, int16, "
        "int32, int64, uint8]")
S
sneaxiy 已提交
66 67


68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
def check_type_and_dtype(input,
                         input_name,
                         expected_type,
                         expected_dtype,
                         op_name,
                         extra_message=''):
    check_type(input, input_name, expected_type, op_name, extra_message)
    check_dtype(input.dtype, input_name, expected_dtype, op_name, extra_message)


def check_type(input, input_name, expected_type, op_name, extra_message=''):
    if not isinstance(input, expected_type):
        raise TypeError(
            "The type of '%s' in %s must be %s, but received %s. %s" %
            (input_name, op_name, expected_type, type(input), extra_message))


def check_dtype(input_dtype,
                input_name,
                expected_dtype,
                op_name,
                extra_message=''):
    if convert_dtype(input_dtype) in ['float16']:
        warnings.warn(
            "The data type of '%s' in %s only support float16 in GPU now. %s" %
            (input_name, op_name, extra_message))
    if convert_dtype(input_dtype) not in expected_dtype:
        raise TypeError(
            "The data type of '%s' in %s must be %s, but received %s. %s" %
            (input_name, op_name, expected_dtype, convert_dtype(input_dtype),
             extra_message))


Y
Yu Yang 已提交
101 102 103 104 105
class DataToLoDTensorConverter(object):
    def __init__(self, place, lod_level, shape, dtype):
        self.place = place
        self.lod_level = lod_level
        self.shape = shape
106 107 108 109 110 111 112
        negtive_count = 0
        for s in self.shape:
            if s < 0:
                negtive_count += 1
            if negtive_count > 1:
                self.shape = None
                break
S
sneaxiy 已提交
113 114
        self.dtype = convert_dtype(dtype)
        self._reset()
Y
Yu Yang 已提交
115

S
sneaxiy 已提交
116
    def _reset(self):
Y
Yu Yang 已提交
117
        self.data = []
S
sneaxiy 已提交
118
        self.lod = [[] for _ in six.moves.range(self.lod_level)]
Y
Yu Yang 已提交
119 120 121 122 123 124 125 126

    def feed(self, data):
        self._feed_impl_(data, self.lod, self.lod_level)

    def _feed_impl_(self, data, lod, lod_level):
        if lod_level == 0:
            self.data.append(data)
        else:
127
            lod[0].append(len(data))
Y
Yu Yang 已提交
128
            for each_data in data:
K
Kexin Zhao 已提交
129
                self._feed_impl_(each_data, lod[1:], lod_level - 1)
Y
Yu Yang 已提交
130

S
sneaxiy 已提交
131
    def _check_shape(self, shape):
S
sneaxiy 已提交
132 133 134 135 136 137
        for s1, s2 in zip(self.shape, shape):
            if s1 != s2 and s1 >= 0 and s2 >= 0:
                raise ValueError(
                    "Shape not match. What is defined in data layer is {}, but receive {}".
                    format(self.shape, shape))

Y
Yu Yang 已提交
138
    def done(self):
139
        arr = numpy.array(self.data, dtype=self.dtype)
S
sneaxiy 已提交
140 141
        if self.shape:
            if len(arr.shape) != len(self.shape):
S
sneaxiy 已提交
142 143 144 145 146 147
                try:
                    arr = arr.reshape(self.shape)
                except ValueError:
                    raise ValueError(
                        "Reshape error. What is defined in data layer is {}, but receive {}"
                        .format(self.shape, arr.shape))
Y
Yu Yang 已提交
148 149 150
        t = core.LoDTensor()
        t.set(arr, self.place)
        if self.lod_level > 0:
151
            t.set_recursive_sequence_lengths(self.lod)
S
sneaxiy 已提交
152
        self._reset()
Y
Yu Yang 已提交
153 154 155
        return t


S
sneaxiy 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
class BatchedTensorProvider(object):
    def __init__(self, feed_list, place, batch_size, generator, drop_last):
        self.place = place
        self.batch_size = batch_size
        self.generator = generator
        self.converters = []
        self.drop_last = drop_last

        for var in feed_list:
            assert var.lod_level == 0, "lod_level must be 0"
            self.converters.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=0,
                    shape=var.shape,
                    dtype=var.dtype))

    def _done(self):
        return [c.done() for c in self.converters]

    def __call__(self):
        idx = 0
        for each_sample in self.generator():
            for each_slot, each_converter in six.moves.zip(each_sample,
                                                           self.converters):
                each_converter.data.append(each_slot)

            idx += 1
            if idx == self.batch_size:
                idx = 0
                yield self._done()

        if not self.drop_last and idx > 0:
            yield self._done()
        else:
            [c._reset() for c in self.converters]


Y
Yu Yang 已提交
194
class DataFeeder(object):
C
chengduoZH 已提交
195
    """
C
chengduoZH 已提交
196
    DataFeeder converts the data that returned by a reader into a data
197 198 199 200 201 202 203 204 205 206 207 208 209 210
    structure that can feed into Executor. The reader is usually a 
    python generator that returns a list of mini-batch data entries. 

    Parameters:
        feed_list (list): Variables or names of Variables that need
            to feed.
        place (:ref:`api_fluid_CPUPlace` | :ref:`api_fluid_CUDAPlace` ): 
            place indicates the device (CPU | GPU) the data will be fed into, if 
            you want to feed data into GPU, please using :code:`fluid.CUDAPlace(i)` 
            (:code:`i` represents the GPU id), or if you want to feed data into CPU, 
            please using :code:`fluid.CPUPlace()`.
        program (:ref:`api_fluid_Program` , optional): The Program that will 
            feed data into, if program is None, it will use default_main_program(). 
            Default None.
C
chengduoZH 已提交
211 212

    Raises:
213
        :code:`ValueError` - If some Variables are not in this Program.
C
chengduoZH 已提交
214

215
    Example:
216 217 218 219 220 221
        ..  code-block:: python

            import numpy as np
            import paddle
            import paddle.fluid as fluid
            
C
chengduoZH 已提交
222
            place = fluid.CPUPlace()
223
            def reader():
224 225
                for _ in range(4):
                    yield np.random.random([4]).astype('float32'), np.random.random([3]).astype('float32'),
226 227 228 229 230
            
            main_program = fluid.Program()
            startup_program = fluid.Program()
            
            with fluid.program_guard(main_program, startup_program):
231 232
                data_1 = fluid.data(name='data_1', shape=[None, 2, 2], dtype='float32')
                data_2 = fluid.data(name='data_2', shape=[None, 1, 3], dtype='float32')
233 234 235
                out = fluid.layers.fc(input=[data_1, data_2], size=2)
                # ...
            feeder = fluid.DataFeeder([data_1, data_2], place)
236
            
237 238
            exe = fluid.Executor(place)
            exe.run(startup_program)
239 240 241 242 243 244 245 246 247 248
            
            feed_data = feeder.feed(reader())
            
            # print feed_data to view feed results
            # print(feed_data['data_1'])
            # print(feed_data['data_2'])
            
            outs = exe.run(program=main_program,
                            feed=feed_data,
                            fetch_list=[out])
249
            print(outs)
250

C
chengduoZH 已提交
251 252
    """

F
fengjiayi 已提交
253
    def __init__(self, feed_list, place, program=None):
Y
Yu Yang 已提交
254 255 256 257
        self.feed_dtypes = []
        self.feed_names = []
        self.feed_shapes = []
        self.feed_lod_level = []
F
fengjiayi 已提交
258 259
        if program is None:
            program = default_main_program()
Y
Yu Yang 已提交
260
        for each_var in feed_list:
261
            if isinstance(each_var, six.string_types):
F
fengjiayi 已提交
262
                each_var = program.block(0).var(each_var)
Y
Yu Yang 已提交
263 264 265 266 267
            if not isinstance(each_var, Variable):
                raise TypeError("Feed list should contain a list of variable")
            self.feed_dtypes.append(each_var.dtype)
            self.feed_names.append(each_var.name)
            self.feed_lod_level.append(each_var.lod_level)
S
sneaxiy 已提交
268
            self.feed_shapes.append(each_var.shape)
Y
Yu Yang 已提交
269 270 271 272

        self.place = place

    def feed(self, iterable):
C
chengduoZH 已提交
273
        """
274 275
        According to :code:`feed_list` of :code:`DataFeeder` and :code:`iterable` , converts 
        the input into a data structure that can feed into Executor.
C
chengduoZH 已提交
276

277 278
        Parameters:
            iterable (generator): user defined python generator to read the raw input data
C
chengduoZH 已提交
279

280 281
        Returns: 
            :code:`dict`: a :code:`dict` that contains (variable name - converted tensor) pairs
282

283
        Example:
284 285
            ..  code-block:: python

286 287 288 289 290 291
                # In this example, reader - generator will return a list of ndarray of 3 elements
                # feed API will convert each ndarray input into a tensor
                # the return result is a dict with keys: data_1, data_2, data_3
                # result['data_1']  a LoD-Tensor with shape of  [5, 2, 1, 3]. 5 is batch size, and [2, 1, 3] is the real shape of data_1.
                # result['data_2'], result['data_3'] are similar.
                import numpy as np
292 293 294
                import paddle.fluid as fluid
                
                def reader(limit=5):
295 296
                    for i in range(1, limit + 1):
                        yield np.ones([6]).astype('float32') * i , np.ones([1]).astype('int64') * i, np.random.random([9]).astype('float32')
297
                
298 299 300
                data_1 = fluid.data(name='data_1', shape=[None, 2, 1, 3])
                data_2 = fluid.data(name='data_2', shape=[None, 1], dtype='int64')
                data_3 = fluid.data(name='data_3', shape=[None, 3, 3], dtype='float32')
301 302
                feeder = fluid.DataFeeder(['data_1','data_2', 'data_3'], fluid.CPUPlace())
                
303 304 305 306
                
                result = feeder.feed(reader())
                print(result['data_1'])
                print(result['data_2'])
307
                print(result['data_3'])
308

C
chengduoZH 已提交
309
        """
Y
Yu Yang 已提交
310
        converter = []
311
        for lod_level, shape, dtype in six.moves.zip(
Y
Yu Yang 已提交
312 313 314 315 316 317 318 319 320
                self.feed_lod_level, self.feed_shapes, self.feed_dtypes):
            converter.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=lod_level,
                    shape=shape,
                    dtype=dtype))

        for each_sample in iterable:
321
            assert len(each_sample) == len(converter), (
322 323
                "The number of fields in data (%d) does not match " +
                "len(feed_list) (%d)") % (len(each_sample), len(converter))
324 325
            for each_converter, each_slot in six.moves.zip(converter,
                                                           each_sample):
Y
Yu Yang 已提交
326 327
                each_converter.feed(each_slot)
        ret_dict = {}
328 329
        for each_name, each_converter in six.moves.zip(self.feed_names,
                                                       converter):
Y
Yu Yang 已提交
330 331
            ret_dict[each_name] = each_converter.done()
        return ret_dict
Y
yuyang18 已提交
332 333

    def feed_parallel(self, iterable, num_places=None):
C
chengduoZH 已提交
334
        """
335 336 337
        Similar with feed function, feed_parallel is used with multiple devices (CPU|GPU).
        Here :code:`iterable` is a list of python generators. The data return by each 
        generator in the list will be fed into a seperate device.        
C
chengduoZH 已提交
338

339 340 341 342 343
        Parameters:
            iterable (list|tuple): list of user-defined python geneators. The element 
                number should match the :code:`num_places`.
            num_places (int, optional): the number of devices. If not provided (None), 
                all available devices on the machine will be used. Default None.
C
chengduoZH 已提交
344

345 346 347
        Returns: 
            :code:`generator`: a :code:`generator` that generate dict which contains (variable name - converted tensor) pairs, 
            the total number of dicts will be generated matches with the :code:`num_places`
C
chengduoZH 已提交
348

349 350
        .. note::        
            The number of devices - :code:`num_places` should equal to the generator (element of :code:`iterable` ) number
351

352
        Example:
353 354
            ..  code-block:: python

355
                import numpy as np
356
                import paddle.fluid as fluid
357

358 359 360 361 362
                def generate_reader(batch_size, base=0, factor=1):
                    def _reader():
                        for i in range(batch_size):
                            yield np.ones([4]) * factor + base, np.ones([4]) * factor + base + 5
                    return _reader()
363 364 365 366

                x = fluid.data(name='x', shape=[None, 2, 2])
                y = fluid.data(name='y', shape=[None, 2, 2], dtype='float32')

367
                z = fluid.layers.elementwise_add(x, y)
368

369
                feeder = fluid.DataFeeder(['x','y'], fluid.CPUPlace())
370
                place_num = 2
371 372 373 374 375
                places = [fluid.CPUPlace() for x in range(place_num)]
                data = []
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(fluid.default_startup_program())
                program = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(places=places)
376

377 378 379 380
                # print sample feed_parallel r resultt
                # for item in list(feeder.feed_parallel([generate_reader(5, 0, 1), generate_reader(3, 10, 2)], 2)):
                #     print(item['x'])
                #     print(item['y'])
381

382 383 384
                reader_list = [generate_reader(5, 0, 1), generate_reader(3, 10, 2)]
                res = exe.run(program=program, feed=list(feeder.feed_parallel(reader_list, 2)), fetch_list=[z])
                print(res)
385

C
chengduoZH 已提交
386
        """
Y
yuyang18 已提交
387 388 389
        if isinstance(self.place, core.CUDAPlace):
            places = [
                core.CUDAPlace(i)
390 391
                for i in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
392 393 394 395
            ]
        else:
            places = [
                core.CPUPlace()
396 397
                for _ in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
398 399 400 401 402 403 404 405 406
            ]

        if len(iterable) != len(places):
            raise ValueError("feed_parallel takes multiple mini-batches. Each "
                             "mini-batch will be feed on each device. The "
                             "number of devices and number of mini-batches "
                             "must be same.")

        place = self.place
407
        for p, batch in six.moves.zip(places, iterable):
Y
yuyang18 已提交
408 409 410 411 412 413 414 415
            self.place = p
            yield self.feed(batch)
        self.place = place

    def _get_number_of_places_(self, num_places):
        if num_places is not None:
            return int(num_places)
        elif isinstance(self.place, core.CUDAPlace):
C
chengduo 已提交
416
            return len(_cuda_ids())
Y
yuyang18 已提交
417
        else:
C
chengduo 已提交
418
            return _cpu_num()
Y
yuyang18 已提交
419 420 421 422 423 424

    def decorate_reader(self,
                        reader,
                        multi_devices,
                        num_places=None,
                        drop_last=True):
C
chengduoZH 已提交
425
        """
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
        Decorate the reader (generator) to fit multiple devices. The reader generate
        multiple mini-batches. Each mini-batch will be fed into a single device.

        Parameters:
            reader(generator): a user defined python generator used to get :code:`mini-batch` of data.
                A :code:`mini-batch` can be regarded as a python generator that returns batchs of input 
                entities, just like the below :code:`_mini_batch` in the code example.                      
            multi_devices(bool): indicate whether to use multiple devices or not.
            num_places(int, optional): if :code:`multi_devices` is True, you can specify the number
                of devices(CPU|GPU) to use, if multi_devices is None, the function will use all the
                devices of the current machine. Default None.
            drop_last(bool, optional): whether to drop the last round of data if it is not enough to 
                feed all devices. Default True.

        Returns: 
            :code:`generator`: a new :code:`generator` which return converted dicts that can be fed into Executor
            
C
chengduoZH 已提交
443
        Raises:
444
            :code:`ValueError`: If drop_last is False and the data cannot fit devices perfectly.
445

446
        Example:
447 448
            ..  code-block:: python

449
                import numpy as np
450 451
                import paddle
                import paddle.fluid as fluid
452
                import paddle.fluid.compiler as compiler
453
                
454 455 456 457
                def reader():
                    def _mini_batch(batch_size):
                        for i in range(batch_size):
                            yield np.random.random([16]).astype('float32'), np.random.randint(10, size=[1])
458

459 460
                    for _ in range(10):
                        yield _mini_batch(np.random.randint(1, 10))
461
                
462 463
                place_num = 3
                places = [fluid.CPUPlace() for _ in range(place_num)]
464
                
465
                # a simple network sample
466 467
                data = fluid.data(name='data', shape=[None, 4, 4], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
468 469
                hidden = fluid.layers.fc(input=data, size=10)
                
470 471
                feeder = fluid.DataFeeder(place=places[0], feed_list=[data, label])
                reader = feeder.decorate_reader(reader, multi_devices=True, num_places=3, drop_last=True)
472
                
473
                exe = fluid.Executor(places[0])
474
                exe.run(fluid.default_startup_program())
475
                compiled_prog = compiler.CompiledProgram(
476 477
                         fluid.default_main_program()).with_data_parallel(places=places)
                
478
                for i,data in enumerate(reader()):
479 480
                    # print data if you like
                    # print(i, data)
481
                    ret = exe.run(compiled_prog, feed=data, fetch_list=[hidden])
482 483
                    print(ret)

C
chengduoZH 已提交
484 485
        """

Y
yuyang18 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
        def __reader_creator__():
            if not multi_devices:
                for item in reader():
                    yield self.feed(item)
            else:
                num = self._get_number_of_places_(num_places)
                item = []
                for batch in reader():
                    item.append(batch)
                    if len(item) == num:
                        yield list(self.feed_parallel(item, num))
                        item = []
                if not drop_last and len(item) != 0:
                    raise ValueError(
                        "The data batch which cannot fit for devices will be "
                        "dropped is not implementation. Other strategies are "
                        "not implemented")

        return __reader_creator__
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564


class NumpyToLoDTensorConverter(object):
    def __init__(self, place):
        self.place = place
        self.data = []
        self._reset()

    def _reset(self):
        self.data = []

    def feed(self, data):
        self.data.append(data)

    def done(self):
        arr = numpy.array(self.data)
        t = core.LoDTensor()
        t.set(arr, self.place)
        self._reset()
        return t


class ListTensorProvider(object):
    def __init__(self, generator, places):
        self.generator = generator
        self.converters = []
        self.places = []
        if places:
            if not isinstance(places, (list, tuple)):
                places = [places]
            assert len(
                places) == 1, "dygraph mode CAN NOT specify multiple places."
            for place in places:
                if isinstance(place, (core.CUDAPlace, core.CPUPlace)):
                    self.places.append(place)
                else:
                    raise ValueError(
                        "Please specify a valid place values such as core.CPUPlace or core.CUDAPlace"
                    )
        if len(self.places) == 0:
            self.places.append(_current_expected_place())

    def _readData(self, iterable, places):
        for place, each_sample in six.moves.zip(places, iterable):
            for item in each_sample:
                if len(self.converters) < len(item):
                    for i in item:
                        self.converters.append(NumpyToLoDTensorConverter(place))
                for each_converter, each_slot in six.moves.zip(self.converters,
                                                               item):
                    each_converter.feed(each_slot)
            yield [c.done() for c in self.converters]

    def __call__(self):
        item = []
        for batch in self.generator():
            item.append(batch)
            if len(item) == len(self.places):
                yield list(self._readData(item, self.places))
                item = []