pool_op_plugin.cu 10.2 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/inference/tensorrt/plugin/pool_op_plugin.h"
N
nhzlx 已提交
16 17 18 19 20
#include "paddle/fluid/operators/math/pooling.h"

namespace paddle {
namespace inference {
namespace tensorrt {
N
nhzlx 已提交
21
namespace plugin {
N
nhzlx 已提交
22

23
nvinfer1::Dims PoolPlugin::getOutputDimensions(int index,
24
                                               const nvinfer1::Dims *inputDims,
25
                                               int nbInputs) {
N
nhzlx 已提交
26 27 28
  assert(nbInputs == 1);
  assert(index == 0);
  assert(inputDims[0].nbDims == 3);
29
  nvinfer1::Dims const &input_dims = inputDims[0];
N
nhzlx 已提交
30 31 32 33 34 35 36 37

  nvinfer1::Dims output_dims = input_dims;

  output_dims.d[1] = output_shape_[1];
  output_dims.d[2] = output_shape_[2];
  return output_dims;
}

38
int PoolPlugin::enqueue(int batchSize, const void *const *inputs,
39
#if IS_TRT_VERSION_LT(8000)
40
                        void **outputs, void *workspace, cudaStream_t stream) {
41 42 43 44
#else
                        void *const *outputs, void *workspace,
                        cudaStream_t stream) {
#endif
45
  auto const &input_dims = this->getInputDims(0);
N
nhzlx 已提交
46
  int input_size = 0;
47 48
  float const *idata = reinterpret_cast<float const *>(inputs[0]);
  float **odatas = reinterpret_cast<float **>(outputs);
N
nhzlx 已提交
49 50 51 52 53 54

  std::vector<int> input_shape = input_shape_;
  std::vector<int> output_shape = output_shape_;
  input_shape.insert(input_shape.begin(), batchSize);
  output_shape.insert(output_shape.begin(), batchSize);

55 56 57 58 59 60
  if (pool_type_ == PoolType::max) {
    paddle::operators::math::MaxPool<float> pool_process;
    paddle::operators::math::Pool2dDirectCUDAFunctor<
        paddle::operators::math::MaxPool<float>, float>
        pool2d_forward;
    pool2d_forward(idata, input_shape, output_shape, ksize_, strides_,
61
                   paddings_, true, adaptive_, odatas[0], stream, pool_process);
62 63 64 65 66 67
  } else if (pool_type_ == PoolType::avg) {
    paddle::operators::math::AvgPool<float> pool_process;
    paddle::operators::math::Pool2dDirectCUDAFunctor<
        paddle::operators::math::AvgPool<float>, float>
        pool2d_forward;
    pool2d_forward(idata, input_shape, output_shape, ksize_, strides_,
68
                   paddings_, true, adaptive_, odatas[0], stream, pool_process);
69
  }
N
nhzlx 已提交
70 71 72 73

  return cudaGetLastError() != cudaSuccess;
}

74 75 76
// Dynamic Plugin below.
#if IS_TRT_VERSION_GE(6000)

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
PoolPluginDynamic::PoolPluginDynamic(void const *serialData,
                                     size_t serialLength) {
  DeserializeValue(&serialData, &serialLength, &ceil_mode_);
  const char *pool_type;
  DeserializeValue(&serialData, &serialLength, &pool_type);
  pool_type_ = std::string(pool_type);
  DeserializeValue(&serialData, &serialLength, &adaptive_);
  DeserializeValue(&serialData, &serialLength, &ksize_);
  DeserializeValue(&serialData, &serialLength, &strides_);
  DeserializeValue(&serialData, &serialLength, &paddings_);
  DeserializeValue(&serialData, &serialLength, &is_global_);
}

size_t PoolPluginDynamic::getSerializationSize() const {
  return SerializedSize(ceil_mode_) + SerializedSize(pool_type_.c_str()) +
         SerializedSize(adaptive_) + SerializedSize(ksize_) +
         SerializedSize(strides_) + SerializedSize(paddings_) +
         SerializedSize(is_global_);
}
96

97 98 99 100 101 102 103 104 105
void PoolPluginDynamic::serialize(void *buffer) const {
  SerializeValue(&buffer, ceil_mode_);
  SerializeValue(&buffer, pool_type_.c_str());
  SerializeValue(&buffer, adaptive_);
  SerializeValue(&buffer, ksize_);
  SerializeValue(&buffer, strides_);
  SerializeValue(&buffer, paddings_);
  SerializeValue(&buffer, is_global_);
}
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

nvinfer1::DimsExprs PoolPluginDynamic::getOutputDimensions(
    int output_index, const nvinfer1::DimsExprs *inputs, int nb_inputs,
    nvinfer1::IExprBuilder &expr_builder) {
  PADDLE_ENFORCE_EQ(nb_inputs, 1,
                    platform::errors::InvalidArgument(
                        "The Split plugin should be only one input."));

  PADDLE_ENFORCE_EQ(
      inputs[0].d[1]->isConstant(), true,
      platform::errors::InvalidArgument("The channel dimension should be "
                                        "static, but we found it's dynamic."));
  nvinfer1::DimsExprs output(inputs[0]);
  if (is_global_) {
    output.d[2] = expr_builder.constant(1);
    output.d[3] = expr_builder.constant(1);
    return output;
  }
  if (adaptive_) {
    output.d[2] = expr_builder.constant(ksize_[0]);
    output.d[3] = expr_builder.constant(ksize_[1]);
    return output;
  }

  auto stri_0 = expr_builder.constant(strides_[0]);
  auto stri_1 = expr_builder.constant(strides_[1]);
Z
Zhaolong Xing 已提交
132
  auto one_value = expr_builder.constant(1);
133

Z
Zhaolong Xing 已提交
134 135
  auto v0_tmp = expr_builder.constant(-ksize_[0] + 2 * paddings_[0]);
  auto v1_tmp = expr_builder.constant(-ksize_[1] + 2 * paddings_[1]);
136

Z
Zhaolong Xing 已提交
137 138 139 140
  auto ceil_tmp =
      expr_builder.constant(-ksize_[0] + 2 * paddings_[0] + strides_[0] - 1);
  auto ceil1_tmp =
      expr_builder.constant(-ksize_[1] + 2 * paddings_[1] + strides_[1] - 1);
141 142

  if (!ceil_mode_) {
Z
Zhaolong Xing 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    output.d[2] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(
            nvinfer1::DimensionOperation::kFLOOR_DIV,
            *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                    *inputs[0].d[2], *v0_tmp),
            *stri_0),
        *one_value);
    output.d[3] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(
            nvinfer1::DimensionOperation::kFLOOR_DIV,
            *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                    *inputs[0].d[3], *v1_tmp),
            *stri_1),
        *one_value);

160
  } else {
Z
Zhaolong Xing 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
    output.d[2] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(
            nvinfer1::DimensionOperation::kFLOOR_DIV,
            *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                    *inputs[0].d[2], *ceil_tmp),
            *stri_0),
        *one_value);
    output.d[3] = expr_builder.operation(
        nvinfer1::DimensionOperation::kSUM,
        *expr_builder.operation(
            nvinfer1::DimensionOperation::kFLOOR_DIV,
            *expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
                                    *inputs[0].d[3], *ceil1_tmp),
            *stri_1),
        *one_value);
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
  }

  return output;
}

bool PoolPluginDynamic::supportsFormatCombination(
    int pos, const nvinfer1::PluginTensorDesc *in_out, int nb_inputs,
    int nb_outputs) {
  PADDLE_ENFORCE_NOT_NULL(
      in_out, platform::errors::InvalidArgument(
                  "The input of swish plugin shoule not be nullptr."));

  PADDLE_ENFORCE_LT(
      pos, nb_inputs + nb_outputs,
      platform::errors::InvalidArgument("The pos(%d) should be less than the "
                                        "num(%d) of the input and the output.",
                                        pos, nb_inputs + nb_outputs));
  (in_out && pos < (nb_inputs + nb_outputs));

  return ((in_out[pos].type == nvinfer1::DataType::kFLOAT) &&
197
          in_out[pos].format == nvinfer1::PluginFormat::kLINEAR);
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
}

nvinfer1::DataType PoolPluginDynamic::getOutputDataType(
    int index, const nvinfer1::DataType *input_types, int nb_inputs) const {
  PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
                                  "The Pool Plugin only has one input, so the "
                                  "index value should be 0, but get %d.",
                                  index));
  PADDLE_ENFORCE_EQ((input_types[0] == nvinfer1::DataType::kFLOAT), true,
                    platform::errors::InvalidArgument(
                        "The input type should be half or float"));
  return input_types[0];
}

int PoolPluginDynamic::enqueue(const nvinfer1::PluginTensorDesc *input_desc,
                               const nvinfer1::PluginTensorDesc *output_desc,
                               const void *const *inputs, void *const *outputs,
                               void *workspace, cudaStream_t stream) {
  auto input_dims = input_desc[0].dims;
  int n = input_dims.d[0];
  int c = input_dims.d[1];
  int h = input_dims.d[2];
  int w = input_dims.d[3];

  const float *input = static_cast<const float *>(inputs[0]);
  float *output = static_cast<float *>(outputs[0]);

  std::vector<int> input_shape, output_shape;
  for (int i = 0; i < input_dims.nbDims; i++)
    input_shape.push_back(input_dims.d[i]);
  output_shape = input_shape;

  std::vector<int> ksize = ksize_;
  std::vector<int> paddings = paddings_;
  if (is_global_) {
    ksize[0] = h;
    ksize[1] = w;
    paddings[0] = 0;
    paddings[1] = 0;
    output_shape[2] = 1;
    output_shape[3] = 1;
  } else {
    auto data_dim = CalcOutputSize({h, w}, ceil_mode_, adaptive_, ksize_,
                                   strides_, paddings_);
    output_shape[2] = data_dim[0];
    output_shape[3] = data_dim[1];
  }

  if (pool_type_ == "max") {
    paddle::operators::math::MaxPool<float> pool_process;
    paddle::operators::math::Pool2dDirectCUDAFunctor<
        paddle::operators::math::MaxPool<float>, float>
        pool2d_forward;
    pool2d_forward(input, input_shape, output_shape, ksize, strides_, paddings,
252
                   true, adaptive_, output, stream, pool_process);
253 254 255 256 257 258
  } else if (pool_type_ == "avg") {
    paddle::operators::math::AvgPool<float> pool_process;
    paddle::operators::math::Pool2dDirectCUDAFunctor<
        paddle::operators::math::AvgPool<float>, float>
        pool2d_forward;
    pool2d_forward(input, input_shape, output_shape, ksize, strides_, paddings,
259
                   true, adaptive_, output, stream, pool_process);
260 261 262 263 264 265
  }

  return cudaGetLastError() != cudaSuccess;
}
#endif

N
nhzlx 已提交
266
}  // namespace plugin
N
nhzlx 已提交
267 268 269
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle