nccl_op.cu 5.6 KB
Newer Older
D
Dong Zhihong 已提交
1 2 3 4
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
Dong Zhihong 已提交
5 6
http://www.apache.org/licenseshashernless required by applicable law or agreed
to in writing, software
D
Dong Zhihong 已提交
7 8 9 10 11 12
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#define EIGEN_USE_GPU
D
Dong Zhihong 已提交
13 14
#include <functional>

D
Dong Zhihong 已提交
15
#include "paddle/framework/lod_tensor.h"
16 17
#include "paddle/framework/op_registry.h"
#include "paddle/operators/nccl/nccl_gpu_common.h"
D
Dong Zhihong 已提交
18 19 20 21

namespace paddle {
namespace operators {

22 23
using framework::Tensor;
using platform::Communicator;
D
Dong Zhihong 已提交
24
using framework::LoDTensor;
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

template <typename Type>
class NCCLTypeWrapper;

template <>
class NCCLTypeWrapper<float> {
 public:
  static const ncclDataType_t type = ncclFloat;
};

template <>
class NCCLTypeWrapper<double> {
 public:
  static const ncclDataType_t type = ncclDouble;
};

D
Dong Zhihong 已提交
41 42 43 44 45 46 47
template <typename T>
class NCCLAllReduceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "This kernel only runs on GPU device.");

D
Dong Zhihong 已提交
48 49
    auto ins = ctx.MultiInput<LoDTensor>("X");
    auto outs = ctx.MultiOutput<LoDTensor>("Out");
D
Dong Zhihong 已提交
50 51 52 53 54 55 56 57 58 59 60 61

    auto* comm = ctx.Input<Communicator>("Communicator");

    auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
                      ctx.device_context())
                      .stream();
    // device id
    int device_id =
        boost::get<platform::GPUPlace>(ctx.GetPlace()).GetDeviceId();
    int idx = comm->GetCommId(device_id);

    for (size_t i = 0; i < ins.size(); ++i) {
D
Dong Zhihong 已提交
62 63 64
      VLOG(1) << " invoke allreduce. send " << ins[i]->numel() << " recv "
              << outs[i]->numel();

D
Dong Zhihong 已提交
65
      PADDLE_ENFORCE(platform::dynload::ncclAllReduce(
D
Dong Zhihong 已提交
66
          ins[i]->data<T>(), outs[i]->mutable_data<T>(ctx.GetPlace()),
D
Dong Zhihong 已提交
67
          outs[i]->numel(), NCCLTypeWrapper<T>::type, ncclSum,
D
Dong Zhihong 已提交
68 69
          comm->comms_[idx], stream));
      PADDLE_ENFORCE(cudaStreamSynchronize(stream));
D
Dong Zhihong 已提交
70 71 72

      VLOG(1) << " finished allreduce. send " << ins[i]->numel() << " recv "
              << outs[i]->numel();
D
Dong Zhihong 已提交
73 74 75 76
    }
  }
};

D
Dong Zhihong 已提交
77 78 79 80 81 82 83
template <typename T>
class NCCLReduceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "This kernel only runs on GPU device.");

D
Dong Zhihong 已提交
84 85
    auto ins = ctx.MultiInput<LoDTensor>("X");  // x0, x1, x2
    auto outs = ctx.MultiOutput<LoDTensor>("Out");
D
Dong Zhihong 已提交
86
    int root = ctx.Attr<int>("root");
D
Dong Zhihong 已提交
87 88 89 90 91 92 93 94 95 96 97

    auto* comm = ctx.Input<Communicator>("Communicator");

    auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
                      ctx.device_context())
                      .stream();
    // device id
    int device_id =
        boost::get<platform::GPUPlace>(ctx.GetPlace()).GetDeviceId();
    int idx = comm->GetCommId(device_id);

D
Dong Zhihong 已提交
98 99
    auto ins_names = ctx.Inputs("X");
    std::hash<std::string> hasher;
D
Dong Zhihong 已提交
100
    for (size_t i = 0; i < ins.size(); ++i) {
D
Dong Zhihong 已提交
101 102 103
      if (root == -1) {
        root = hasher(ins_names[i]) % comm->comms_.size();
      }
D
Dong Zhihong 已提交
104 105 106 107
      T* recvbuffer = nullptr;
      if (root == device_id) {
        recvbuffer = outs[i]->mutable_data<T>(ctx.GetPlace());
      }
D
Dong Zhihong 已提交
108 109 110 111

      VLOG(1) << " invoke reduce. send " << ins[i]->numel() << " recv "
              << outs[i]->numel();

D
Dong Zhihong 已提交
112 113 114
      PADDLE_ENFORCE(platform::dynload::ncclReduce(
          ins[i]->data<T>(), recvbuffer, ins[i]->numel(),
          NCCLTypeWrapper<T>::type, ncclSum, root, comm->comms_[idx], stream));
D
Dong Zhihong 已提交
115
      PADDLE_ENFORCE(cudaStreamSynchronize(stream));
D
Dong Zhihong 已提交
116 117 118

      VLOG(1) << " finished reduce. send " << ins[i]->numel() << " recv "
              << outs[i]->numel();
D
Dong Zhihong 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    }
  }
};

template <typename T>
class NCCLBcastKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "This kernel only runs on GPU device.");

    int root = ctx.Attr<int>("root");

    auto* comm = ctx.Input<Communicator>("Communicator");

    auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
                      ctx.device_context())
                      .stream();
    // device id
    int device_id =
        boost::get<platform::GPUPlace>(ctx.GetPlace()).GetDeviceId();
    int idx = comm->GetCommId(device_id);
D
Dong Zhihong 已提交
141

D
Dong Zhihong 已提交
142
    if (idx == root) {
D
Dong Zhihong 已提交
143
      auto ins = ctx.MultiInput<LoDTensor>("X");
D
Dong Zhihong 已提交
144
      for (size_t i = 0; i < ins.size(); ++i) {
D
Dong Zhihong 已提交
145 146 147
        PADDLE_ENFORCE(platform::dynload::ncclBcast(
            (void*)ins[i]->data<T>(), ins[i]->numel(), NCCLTypeWrapper<T>::type,
            root, comm->comms_[idx], stream));
D
Dong Zhihong 已提交
148 149 150
        PADDLE_ENFORCE(cudaStreamSynchronize(stream));
      }
    } else {
D
Dong Zhihong 已提交
151
      auto outs = ctx.MultiOutput<LoDTensor>("Out");
D
Dong Zhihong 已提交
152
      for (size_t i = 0; i < outs.size(); ++i) {
D
Dong Zhihong 已提交
153 154 155
        PADDLE_ENFORCE(platform::dynload::ncclBcast(
            outs[i]->mutable_data<T>(ctx.GetPlace()), outs[i]->numel(),
            NCCLTypeWrapper<T>::type, root, comm->comms_[idx], stream));
D
Dong Zhihong 已提交
156 157 158 159 160 161
        PADDLE_ENFORCE(cudaStreamSynchronize(stream));
      }
    }
  }
};

D
Dong Zhihong 已提交
162 163 164 165 166
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(ncclAllReduce, ops::NCCLAllReduceKernel<float>);
D
Dong Zhihong 已提交
167
REGISTER_OP_GPU_KERNEL(ncclBcast, ops::NCCLBcastKernel<float>);
D
Dong Zhihong 已提交
168
REGISTER_OP_GPU_KERNEL(ncclReduce, ops::NCCLReduceKernel<float>);