nccl_op.cu 5.6 KB
Newer Older
D
Dong Zhihong 已提交
1 2 3 4
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
Dong Zhihong 已提交
5 6
http://www.apache.org/licenseshashernless required by applicable law or agreed
to in writing, software
D
Dong Zhihong 已提交
7 8 9 10 11 12
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#define EIGEN_USE_GPU
D
Dong Zhihong 已提交
13 14
#include <functional>

D
Dong Zhihong 已提交
15
#include "paddle/framework/lod_tensor.h"
16 17
#include "paddle/framework/op_registry.h"
#include "paddle/operators/nccl/nccl_gpu_common.h"
D
Dong Zhihong 已提交
18 19 20 21

namespace paddle {
namespace operators {

22 23
using framework::Tensor;
using platform::Communicator;
D
Dong Zhihong 已提交
24
using framework::LoDTensor;
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

template <typename Type>
class NCCLTypeWrapper;

template <>
class NCCLTypeWrapper<float> {
 public:
  static const ncclDataType_t type = ncclFloat;
};

template <>
class NCCLTypeWrapper<double> {
 public:
  static const ncclDataType_t type = ncclDouble;
};

D
Dong Zhihong 已提交
41 42 43 44 45 46 47
template <typename T>
class NCCLAllReduceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "This kernel only runs on GPU device.");

D
Dong Zhihong 已提交
48 49
    auto ins = ctx.MultiInput<LoDTensor>("X");
    auto outs = ctx.MultiOutput<LoDTensor>("Out");
D
Dong Zhihong 已提交
50 51 52 53 54 55 56 57 58 59 60 61

    auto* comm = ctx.Input<Communicator>("Communicator");

    auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
                      ctx.device_context())
                      .stream();
    // device id
    int device_id =
        boost::get<platform::GPUPlace>(ctx.GetPlace()).GetDeviceId();
    int idx = comm->GetCommId(device_id);

    for (size_t i = 0; i < ins.size(); ++i) {
D
Dong Zhihong 已提交
62 63 64
      VLOG(1) << " invoke allreduce. send " << ins[i]->numel() << " recv "
              << outs[i]->numel();

D
Dong Zhihong 已提交
65
      PADDLE_ENFORCE(platform::dynload::ncclAllReduce(
D
Dong Zhihong 已提交
66
          ins[i]->data<T>(), outs[i]->mutable_data<T>(ctx.GetPlace()),
D
Dong Zhihong 已提交
67
          outs[i]->numel(), NCCLTypeWrapper<T>::type, ncclSum,
D
Dong Zhihong 已提交
68 69
          comm->comms_[idx], stream));
      PADDLE_ENFORCE(cudaStreamSynchronize(stream));
D
Dong Zhihong 已提交
70 71 72

      VLOG(1) << " finished allreduce. send " << ins[i]->numel() << " recv "
              << outs[i]->numel();
D
Dong Zhihong 已提交
73 74 75 76
    }
  }
};

D
Dong Zhihong 已提交
77 78 79 80 81 82 83
template <typename T>
class NCCLReduceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "This kernel only runs on GPU device.");

D
Dong Zhihong 已提交
84 85
    auto ins = ctx.MultiInput<LoDTensor>("X");  // x0, x1, x2
    auto outs = ctx.MultiOutput<LoDTensor>("Out");
D
Dong Zhihong 已提交
86 87 88 89 90 91 92 93 94 95 96

    auto* comm = ctx.Input<Communicator>("Communicator");

    auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
                      ctx.device_context())
                      .stream();
    // device id
    int device_id =
        boost::get<platform::GPUPlace>(ctx.GetPlace()).GetDeviceId();
    int idx = comm->GetCommId(device_id);

D
Dong Zhihong 已提交
97 98
    auto ins_names = ctx.Inputs("X");
    std::hash<std::string> hasher;
D
Dong Zhihong 已提交
99
    for (size_t i = 0; i < ins.size(); ++i) {
D
Dong Zhihong 已提交
100
      int root = hasher(ins_names[i]) % comm->comms_.size();
D
Dong Zhihong 已提交
101 102 103 104
      T* recvbuffer = nullptr;
      if (root == device_id) {
        recvbuffer = outs[i]->mutable_data<T>(ctx.GetPlace());
      }
D
Dong Zhihong 已提交
105 106 107 108

      VLOG(1) << " invoke reduce. send " << ins[i]->numel() << " recv "
              << outs[i]->numel();

D
Dong Zhihong 已提交
109 110 111
      PADDLE_ENFORCE(platform::dynload::ncclReduce(
          ins[i]->data<T>(), recvbuffer, ins[i]->numel(),
          NCCLTypeWrapper<T>::type, ncclSum, root, comm->comms_[idx], stream));
D
Dong Zhihong 已提交
112
      PADDLE_ENFORCE(cudaStreamSynchronize(stream));
D
Dong Zhihong 已提交
113 114 115

      VLOG(1) << " finished reduce. send " << ins[i]->numel() << " recv "
              << outs[i]->numel();
D
Dong Zhihong 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    }
  }
};

template <typename T>
class NCCLBcastKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "This kernel only runs on GPU device.");

    int root = ctx.Attr<int>("root");

    auto* comm = ctx.Input<Communicator>("Communicator");

    auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
                      ctx.device_context())
                      .stream();
    // device id
    int device_id =
        boost::get<platform::GPUPlace>(ctx.GetPlace()).GetDeviceId();
    int idx = comm->GetCommId(device_id);
    if (idx == root) {
      auto ins = ctx.MultiInput<Tensor>("X");
      for (size_t i = 0; i < ins.size(); ++i) {
D
Dong Zhihong 已提交
141 142 143
        PADDLE_ENFORCE(platform::dynload::ncclBcast(
            (void*)ins[i]->data<T>(), ins[i]->numel(), NCCLTypeWrapper<T>::type,
            root, comm->comms_[idx], stream));
D
Dong Zhihong 已提交
144 145 146 147 148
        PADDLE_ENFORCE(cudaStreamSynchronize(stream));
      }
    } else {
      auto outs = ctx.MultiOutput<Tensor>("Out");
      for (size_t i = 0; i < outs.size(); ++i) {
D
Dong Zhihong 已提交
149 150 151
        PADDLE_ENFORCE(platform::dynload::ncclBcast(
            outs[i]->mutable_data<T>(ctx.GetPlace()), outs[i]->numel(),
            NCCLTypeWrapper<T>::type, root, comm->comms_[idx], stream));
D
Dong Zhihong 已提交
152 153 154 155 156 157
        PADDLE_ENFORCE(cudaStreamSynchronize(stream));
      }
    }
  }
};

D
Dong Zhihong 已提交
158 159 160 161 162
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(ncclAllReduce, ops::NCCLAllReduceKernel<float>);
D
Dong Zhihong 已提交
163 164 165
REGISTER_OP_GPU_KERNEL(ncclBcastSend, ops::NCCLBcastKernel<float>);
REGISTER_OP_GPU_KERNEL(ncclReduce, ops::NCCLReduceKernel<float>);
REGISTER_OP_GPU_KERNEL(ncclBcastRecv, ops::NCCLBcastKernel<float>);