lrn_op.cc 15.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/lrn_op.h"
16

17
#include <memory>
18
#include <string>
19
#include <vector>
20

21 22
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"
T
Tomasz Patejko 已提交
23 24 25
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
G
gongweibao 已提交
26 27 28 29 30

namespace paddle {
namespace operators {

using framework::Tensor;
31
using DataLayout = framework::DataLayout;
G
gongweibao 已提交
32

33
template <typename T>
L
Leo Chen 已提交
34
struct LRNFunctor<phi::CPUContext, T> {
35
  void operator()(const framework::ExecutionContext& ctx,
36 37 38 39 40 41 42 43 44 45 46 47
                  const framework::Tensor& input,
                  framework::Tensor* out,
                  framework::Tensor* mid,
                  int N,
                  int C,
                  int H,
                  int W,
                  int n,
                  T k,
                  T alpha,
                  T beta,
                  const DataLayout data_layout) {
48
    auto place = ctx.GetPlace();
L
Leo Chen 已提交
49 50 51
    auto blas = phi::funcs::GetBlas<phi::CPUContext, T>(ctx);
    phi::funcs::Transpose<phi::CPUContext, T, 4> transpose;
    auto& dev_ctx = ctx.template device_context<phi::CPUContext>();
52 53 54 55 56 57
    Tensor in_transpose, mid_transpose, out_transpose;
    // if channel_last, transpose to channel_first
    if (data_layout == DataLayout::kNHWC) {
      auto in_dims = input.dims();
      std::vector<int64_t> shape(
          {in_dims[0], in_dims[3], in_dims[1], in_dims[2]});
58 59 60
      in_transpose.mutable_data<T>(phi::make_ddim(shape), place);
      mid_transpose.mutable_data<T>(phi::make_ddim(shape), place);
      out_transpose.mutable_data<T>(phi::make_ddim(shape), place);
61 62 63 64 65 66 67 68 69 70 71 72 73 74
      std::vector<int> axis = {0, 3, 1, 2};
      transpose(dev_ctx, input, &in_transpose, axis);
    } else {
      in_transpose = input;
      mid_transpose = *mid;
      out_transpose = *out;
      mid_transpose.mutable_data<T>(mid->dims(), place);
      out_transpose.mutable_data<T>(out->dims(), place);
    }

    const T* idata = in_transpose.data<T>();
    T* odata = out_transpose.data<T>();
    T* mdata = mid_transpose.data<T>();

75 76 77 78 79 80 81 82 83 84 85
    Tensor squared;
    T* sdata = squared.mutable_data<T>({1, C + n - 1, H, W}, place);
    std::memset(sdata, 0, sizeof(T) * squared.numel());
    for (int i = 0; i < mid->numel(); ++i) {
      mdata[i] = k;
    }
    int img_size = H * W;
    int fea_size = C * img_size;
    int pre_pad = (n - 1) / 2;
    // compute batches one by one
    for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
86
      blas.VSQUARE(fea_size, idata + i * fea_size, sdata + pre_pad * img_size);
87 88 89 90 91 92 93
      // init the first channel of mid
      for (int c = 0; c < n; ++c) {
        blas.AXPY(img_size, alpha, sdata + c * img_size, mdata + i * fea_size);
      }
      for (int c = 1; c < C; ++c) {
        // copy previous scale
        int mid_offset = i * fea_size + c * img_size;
94 95
        std::memcpy(mdata + mid_offset,
                    mdata + mid_offset - img_size,
96 97
                    img_size * sizeof(T));
        // add last
98 99 100
        blas.AXPY(img_size,
                  alpha,
                  sdata + (c + n - 1) * img_size,
101 102
                  mdata + mid_offset);
        // sub rest
103 104
        blas.AXPY(
            img_size, -alpha, sdata + (c - 1) * img_size, mdata + mid_offset);
105 106
      }
    }
107 108 109
    // compute the final output
    blas.VPOW(mid->numel(), mdata, -beta, odata);
    blas.VMUL(mid->numel(), odata, idata, odata);
110 111 112 113 114 115 116

    // if channel_last, transpose the output(NCHW) to channel_last
    if (data_layout == DataLayout::kNHWC) {
      std::vector<int> axis = {0, 2, 3, 1};
      transpose(dev_ctx, mid_transpose, mid, axis);
      transpose(dev_ctx, out_transpose, out, axis);
    }
117 118
  }
};
L
Leo Chen 已提交
119 120
template struct LRNFunctor<phi::CPUContext, float>;
template struct LRNFunctor<phi::CPUContext, double>;
121 122

template <typename T>
L
Leo Chen 已提交
123
struct LRNGradFunctor<phi::CPUContext, T> {
124
  void operator()(const framework::ExecutionContext& ctx,
125 126 127 128 129 130 131 132 133 134 135 136 137
                  const framework::Tensor& x,
                  const framework::Tensor& out,
                  const framework::Tensor& mid,
                  framework::Tensor* x_g,
                  const framework::Tensor& out_g,
                  int N,
                  int C,
                  int H,
                  int W,
                  int n,
                  T alpha,
                  T beta,
                  const DataLayout data_layout) {
138 139 140 141 142 143 144 145 146 147 148 149 150 151
    T ratio = -2 * alpha * beta;
    auto x_g_e = framework::EigenVector<T>::Flatten(*x_g);
    x_g_e = x_g_e.constant(0.0);

    auto e_x = framework::EigenTensor<T, 4>::From(x);
    auto e_x_g = framework::EigenTensor<T, 4>::From(*x_g);
    auto e_out = framework::EigenTensor<T, 4>::From(out);
    auto e_out_g = framework::EigenTensor<T, 4>::From(out_g);
    auto e_mid = framework::EigenTensor<T, 4>::From(mid);

    const int start = -(n - 1) / 2;
    const int end = start + n;
    for (int m = 0; m < N; m++) {
      for (int i = 0; i < C; i++) {
152 153 154 155 156 157
        auto offsets = Eigen::array<int, 4>({{m, i, 0, 0}});
        auto extents = Eigen::array<int, 4>({{1, 1, H, W}});
        if (data_layout == DataLayout::kNHWC) {
          offsets = Eigen::array<int, 4>({{m, 0, 0, i}});
          extents = Eigen::array<int, 4>({{1, H, W, 1}});
        }
158

159 160 161 162
        auto i_x = e_x.slice(offsets, extents);
        auto i_x_g = e_x_g.slice(offsets, extents);
        auto i_out_g = e_out_g.slice(offsets, extents);
        auto i_mid = e_mid.slice(offsets, extents);
163 164

        i_x_g = i_mid.pow(-beta) * i_out_g;
Q
qingqing01 已提交
165
        for (int c = start; c < end; c++) {
166 167 168 169 170
          int ch = i + c;
          if (ch < 0 || ch >= C) {
            continue;
          }

171 172 173 174 175 176 177 178
          if (data_layout != DataLayout::kNHWC) {
            offsets = Eigen::array<int, 4>({{m, ch, 0, 0}});
          } else {
            offsets = Eigen::array<int, 4>({{m, 0, 0, ch}});
          }
          auto c_out = e_out.slice(offsets, extents);
          auto c_mid = e_mid.slice(offsets, extents);
          auto c_out_g = e_out_g.slice(offsets, extents);
179 180 181 182 183 184 185

          i_x_g += ratio * c_out_g * c_out * i_x / c_mid;
        }
      }
    }
  }
};
L
Leo Chen 已提交
186 187
template struct LRNGradFunctor<phi::CPUContext, float>;
template struct LRNGradFunctor<phi::CPUContext, double>;
188

G
gongweibao 已提交
189 190 191 192 193 194
class LRNOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
195 196 197
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "LRN");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "LRN");
    OP_INOUT_CHECK(ctx->HasOutput("MidOut"), "Output", "MidOut", "LRN");
G
gongweibao 已提交
198 199

    auto x_dim = ctx->GetInputDim("X");
200
    PADDLE_ENFORCE_EQ(
201 202
        x_dim.size(),
        4,
203 204 205
        platform::errors::InvalidArgument("Input(input) rank should be 4, "
                                          "but received input rank (%d) != 4",
                                          x_dim.size()));
G
gongweibao 已提交
206

207
    int n = ctx->Attrs().Get<int>("n");
208 209
    PADDLE_ENFORCE_GT(n,
                      0UL,
210 211 212 213
                      platform::errors::InvalidArgument(
                          "Argument(n) should be positive, "
                          "but received n(%d) not greater than 0",
                          n));
214 215
    PADDLE_ENFORCE_EQ(n % 2,
                      1UL,
216 217 218 219
                      platform::errors::InvalidArgument(
                          "Argument(n) should be odd value, "
                          "but received n(%d) is not an odd value",
                          n));
220

G
gongweibao 已提交
221 222
    ctx->SetOutputDim("Out", x_dim);
    ctx->ShareLoD("X", /*->*/ "Out");
223
    ctx->SetOutputDim("MidOut", x_dim);
G
gongweibao 已提交
224
  }
T
Tomasz Patejko 已提交
225 226

  framework::OpKernelType GetExpectedKernelType(
227
      const framework::ExecutionContext& ctx) const override {
228 229
    framework::LibraryType library_{framework::LibraryType::kPlain};
    // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
230
    framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
231
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
232 233
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
234
        this->CanMKLDNNBeUsed(ctx, data_type)) {
235 236 237 238
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
239 240
    return framework::OpKernelType(
        data_type, ctx.GetPlace(), layout_, library_);
T
Tomasz Patejko 已提交
241
  }
242 243

  framework::OpKernelType GetKernelTypeForVar(
244 245
      const std::string& var_name,
      const Tensor& tensor,
246 247 248 249 250 251 252 253
      const framework::OpKernelType& expected_kernel_type) const override {
#ifdef PADDLE_WITH_MKLDNN
    if ((expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
        (tensor.layout() != framework::DataLayout::kMKLDNN)) {
      auto attrs = Attrs();
      auto ar = paddle::framework::AttrReader(attrs);
      const std::string data_format = ar.Get<std::string>("data_format");
      auto dl = framework::StringToDataLayout(data_format);
J
Jacek Czaja 已提交
254
      // Some models may have intentionally set "AnyLayout" for lrn
255 256
      // op. Treat this as NCHW (default data_format value)
      if (dl != framework::DataLayout::kAnyLayout) {
257 258
        return framework::OpKernelType(
            expected_kernel_type.data_type_, tensor.place(), dl);
259 260 261
      }
    }
#endif
262 263
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
264
  }
G
gongweibao 已提交
265 266 267 268 269
};

template <typename T>
class LRNOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
270
  void Make() override {
K
kexinzhao 已提交
271 272 273
    AddInput("X",
             "(Tensor) The input of LRN operator. "
             "It must be a 4D tenor with NCHW format.");
G
gongweibao 已提交
274 275 276
    AddOutput("Out",
              "(Tensor) The output of LRN operator, which is also the 4D "
              "tensor with NCHW format.");
K
kexinzhao 已提交
277 278 279 280 281 282 283 284
    AddOutput("MidOut",
              "(Tensor) Middle result of LRN operator. It's computed in "
              "forward process and also used in backward process.");

    AddAttr<int>("n",
                 "(int default 5) "
                 "n is the \"adjacent\" kernel that maps "
                 "at the same spatial position.")
G
gongweibao 已提交
285 286 287
        .SetDefault(5)
        .GreaterThan(0);

K
kexinzhao 已提交
288 289 290
    AddAttr<T>("k",
               "(float, default 2.0) "
               "k is the bias.")
G
gongweibao 已提交
291 292 293
        .SetDefault(2.0)
        .GreaterThan(0.0);

K
kexinzhao 已提交
294 295 296
    AddAttr<T>("alpha",
               "(float, default 0.0001) "
               "alpha is the scale number.")
G
gongweibao 已提交
297 298 299
        .SetDefault(0.0001)
        .GreaterThan(0.0);

K
kexinzhao 已提交
300 301 302
    AddAttr<T>("beta",
               "(float, default 0.75) "
               "beta is the power number.")
G
gongweibao 已提交
303 304
        .SetDefault(0.75)
        .GreaterThan(0.0);
T
Tomasz Patejko 已提交
305 306 307 308 309 310 311
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
G
gongweibao 已提交
312
    AddComment(R"DOC(
K
kexinzhao 已提交
313
Local Response Normalization Operator.
G
gongweibao 已提交
314

315 316
This operator comes from the paper:
<<ImageNet Classification with Deep Convolutional Neural Networks>>.
G
gongweibao 已提交
317

K
kexinzhao 已提交
318
The original formula is:
G
gongweibao 已提交
319

K
kexinzhao 已提交
320 321
$$
Output(i, x, y) = Input(i, x, y) / \left(
X
xiaoting 已提交
322
k + \alpha \sum\limits^{\min(C-1, i + n/2)}_{j = \max(0, i - n/2)}
K
kexinzhao 已提交
323 324 325
(Input(j, x, y))^2
\right)^{\beta}
$$
G
gongweibao 已提交
326

K
kexinzhao 已提交
327
Function implementation:
G
gongweibao 已提交
328

T
tianshuo78520a 已提交
329
Inputs and outputs are in NCHW or NHWC format, while input.shape.ndims() equals 4.
330
If NCHW, the dimensions 0 ~ 3 represent batch size, feature maps, rows,
K
kexinzhao 已提交
331
and columns, respectively.
G
gongweibao 已提交
332

K
kexinzhao 已提交
333 334
Input and Output in the formula above is for each map(i) of one image, and
Input(i, x, y), Output(i, x, y) represents an element in an image.
G
gongweibao 已提交
335

K
kexinzhao 已提交
336 337 338
C is the number of feature maps of one image. n is a hyper-parameter
configured when operator is initialized. The sum in the denominator
is the sum of the same positions in the neighboring maps.
Q
QI JUN 已提交
339

K
kexinzhao 已提交
340
)DOC");
G
gongweibao 已提交
341 342 343 344 345 346 347 348 349
  }
};

class LRNOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
350 351
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "LRNGrad");
    OP_INOUT_CHECK(ctx->HasInput("MidOut"), "Input", "MidOu", "LRNGrad");
352 353 354 355
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
                   "Input",
                   "Out@GRAD",
                   "LRNGrad");
G
gongweibao 已提交
356 357 358 359 360

    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
  }

T
Tomasz Patejko 已提交
361
  framework::OpKernelType GetExpectedKernelType(
362
      const framework::ExecutionContext& ctx) const override {
363 364
    framework::LibraryType library_{framework::LibraryType::kPlain};
    // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
365
    framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
366
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
367 368
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
369
        this->CanMKLDNNBeUsed(ctx, data_type)) {
370 371 372 373
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
374 375
    return framework::OpKernelType(
        data_type, ctx.GetPlace(), layout_, library_);
T
Tomasz Patejko 已提交
376
  }
377 378

  framework::OpKernelType GetKernelTypeForVar(
379 380
      const std::string& var_name,
      const Tensor& tensor,
381 382 383 384 385 386 387 388 389 390 391
      const framework::OpKernelType& expected_kernel_type) const override {
#ifdef PADDLE_WITH_MKLDNN
    if ((expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
        (tensor.layout() != framework::DataLayout::kMKLDNN)) {
      auto attrs = Attrs();
      auto ar = paddle::framework::AttrReader(attrs);
      const std::string data_format = ar.Get<std::string>("data_format");
      auto dl = framework::StringToDataLayout(data_format);
      // Some models may have intentionally set "AnyLayout" for lrn
      // op. Treat this as NCHW (default data_format value)
      if (dl != framework::DataLayout::kAnyLayout) {
392 393
        return framework::OpKernelType(
            expected_kernel_type.data_type_, tensor.place(), dl);
394 395 396
      }
    }
#endif
397 398
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
399
  }
T
Tomasz Patejko 已提交
400
};
401 402 403 404 405

template <typename T>
class LRNGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
406
  void Apply(GradOpPtr<T> op) const override {
407 408 409 410 411 412 413 414 415 416
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Out", this->Output("Out"));
    op->SetInput("MidOut", this->Output("MidOut"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
  }
};

G
gongweibao 已提交
417 418 419 420
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
421 422 423
REGISTER_OPERATOR(lrn,
                  ops::LRNOp,
                  ops::LRNOpMaker<float>,
424 425
                  ops::LRNGradOpMaker<paddle::framework::OpDesc>,
                  ops::LRNGradOpMaker<paddle::imperative::OpBase>);
H
hong 已提交
426

427
REGISTER_OPERATOR(lrn_grad, ops::LRNOpGrad);
L
Leo Chen 已提交
428 429
REGISTER_OP_CPU_KERNEL(lrn, ops::LRNKernel<phi::CPUContext, float>);
REGISTER_OP_CPU_KERNEL(lrn_grad, ops::LRNGradKernel<phi::CPUContext, float>);