lrn_op.cc 11.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/lrn_op.h"
16
#include <string>
17
#include "paddle/fluid/operators/math/blas.h"
T
Tomasz Patejko 已提交
18 19 20
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
G
gongweibao 已提交
21 22 23 24 25 26

namespace paddle {
namespace operators {

using framework::Tensor;

27
template <typename T>
Q
QI JUN 已提交
28
struct LRNFunctor<platform::CPUDeviceContext, T> {
29 30 31 32
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor& input, framework::Tensor* out,
                  framework::Tensor* mid, int N, int C, int H, int W, int n,
                  T k, T alpha, T beta) {
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
    const T* idata = input.data<T>();
    auto place = ctx.GetPlace();
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
    T* odata = out->mutable_data<T>(place);
    T* mdata = mid->mutable_data<T>(place);
    Tensor squared;
    T* sdata = squared.mutable_data<T>({1, C + n - 1, H, W}, place);
    std::memset(sdata, 0, sizeof(T) * squared.numel());
    for (int i = 0; i < mid->numel(); ++i) {
      mdata[i] = k;
    }
    int img_size = H * W;
    int fea_size = C * img_size;
    int pre_pad = (n - 1) / 2;
    // compute batches one by one
    for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
49
      blas.VSQUARE(fea_size, idata + i * fea_size, sdata + pre_pad * img_size);
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
      // init the first channel of mid
      for (int c = 0; c < n; ++c) {
        blas.AXPY(img_size, alpha, sdata + c * img_size, mdata + i * fea_size);
      }
      for (int c = 1; c < C; ++c) {
        // copy previous scale
        int mid_offset = i * fea_size + c * img_size;
        std::memcpy(mdata + mid_offset, mdata + mid_offset - img_size,
                    img_size * sizeof(T));
        // add last
        blas.AXPY(img_size, alpha, sdata + (c + n - 1) * img_size,
                  mdata + mid_offset);
        // sub rest
        blas.AXPY(img_size, -alpha, sdata + (c - 1) * img_size,
                  mdata + mid_offset);
65 66
      }
    }
67 68 69
    // compute the final output
    blas.VPOW(mid->numel(), mdata, -beta, odata);
    blas.VMUL(mid->numel(), odata, idata, odata);
70 71
  }
};
Q
QI JUN 已提交
72 73
template struct LRNFunctor<platform::CPUDeviceContext, float>;
template struct LRNFunctor<platform::CPUDeviceContext, double>;
74 75

template <typename T>
Q
QI JUN 已提交
76
struct LRNGradFunctor<platform::CPUDeviceContext, T> {
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor& x, const framework::Tensor& out,
                  const framework::Tensor& mid, framework::Tensor* x_g,
                  const framework::Tensor& out_g, int N, int C, int H, int W,
                  int n, T alpha, T beta) {
    T ratio = -2 * alpha * beta;
    auto x_g_e = framework::EigenVector<T>::Flatten(*x_g);
    x_g_e = x_g_e.constant(0.0);

    auto e_x = framework::EigenTensor<T, 4>::From(x);
    auto e_x_g = framework::EigenTensor<T, 4>::From(*x_g);
    auto e_out = framework::EigenTensor<T, 4>::From(out);
    auto e_out_g = framework::EigenTensor<T, 4>::From(out_g);
    auto e_mid = framework::EigenTensor<T, 4>::From(mid);

    const int start = -(n - 1) / 2;
    const int end = start + n;
    for (int m = 0; m < N; m++) {
      for (int i = 0; i < C; i++) {
        auto i_x = e_x.slice(Eigen::array<int, 4>({{m, i, 0, 0}}),
                             Eigen::array<int, 4>({{1, 1, H, W}}));

        auto i_x_g = e_x_g.slice(Eigen::array<int, 4>({{m, i, 0, 0}}),
                                 Eigen::array<int, 4>({{1, 1, H, W}}));

        auto i_out_g = e_out_g.slice(Eigen::array<int, 4>({{m, i, 0, 0}}),
                                     Eigen::array<int, 4>({{1, 1, H, W}}));

        auto i_mid = e_mid.slice(Eigen::array<int, 4>({{m, i, 0, 0}}),
                                 Eigen::array<int, 4>({{1, 1, H, W}}));

        i_x_g = i_mid.pow(-beta) * i_out_g;
Q
qingqing01 已提交
109
        for (int c = start; c < end; c++) {
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
          int ch = i + c;
          if (ch < 0 || ch >= C) {
            continue;
          }

          auto c_out = e_out.slice(Eigen::array<int, 4>({{m, ch, 0, 0}}),
                                   Eigen::array<int, 4>({{1, 1, H, W}}));

          auto c_mid = e_mid.slice(Eigen::array<int, 4>({{m, ch, 0, 0}}),
                                   Eigen::array<int, 4>({{1, 1, H, W}}));

          auto c_out_g = e_out_g.slice(Eigen::array<int, 4>({{m, ch, 0, 0}}),
                                       Eigen::array<int, 4>({{1, 1, H, W}}));

          i_x_g += ratio * c_out_g * c_out * i_x / c_mid;
        }
      }
    }
  }
};
Q
QI JUN 已提交
130 131
template struct LRNGradFunctor<platform::CPUDeviceContext, float>;
template struct LRNGradFunctor<platform::CPUDeviceContext, double>;
132

G
gongweibao 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
class LRNOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of LRNOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of LRNOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("MidOut"),
                   "MidOut(Out) of LRNOp should not be null.");

    auto x_dim = ctx->GetInputDim("X");
    PADDLE_ENFORCE_EQ(x_dim.size(), 4, "Input(X)'rank of LRNOp should be 4.");

148 149 150
    int n = ctx->Attrs().Get<int>("n");
    PADDLE_ENFORCE(n > 0 && n % 2 == 1, "n should be positive odd value");

G
gongweibao 已提交
151 152
    ctx->SetOutputDim("Out", x_dim);
    ctx->ShareLoD("X", /*->*/ "Out");
153
    ctx->SetOutputDim("MidOut", x_dim);
G
gongweibao 已提交
154
  }
T
Tomasz Patejko 已提交
155 156

  framework::OpKernelType GetExpectedKernelType(
157
      const framework::ExecutionContext& ctx) const override {
158 159 160 161 162 163 164 165 166 167 168 169 170 171
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
    // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
        layout_, library_);
T
Tomasz Patejko 已提交
172
  }
G
gongweibao 已提交
173 174 175 176 177
};

template <typename T>
class LRNOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
178
  void Make() override {
K
kexinzhao 已提交
179 180 181
    AddInput("X",
             "(Tensor) The input of LRN operator. "
             "It must be a 4D tenor with NCHW format.");
G
gongweibao 已提交
182 183 184
    AddOutput("Out",
              "(Tensor) The output of LRN operator, which is also the 4D "
              "tensor with NCHW format.");
K
kexinzhao 已提交
185 186 187 188 189 190 191 192
    AddOutput("MidOut",
              "(Tensor) Middle result of LRN operator. It's computed in "
              "forward process and also used in backward process.");

    AddAttr<int>("n",
                 "(int default 5) "
                 "n is the \"adjacent\" kernel that maps "
                 "at the same spatial position.")
G
gongweibao 已提交
193 194 195
        .SetDefault(5)
        .GreaterThan(0);

K
kexinzhao 已提交
196 197 198
    AddAttr<T>("k",
               "(float, default 2.0) "
               "k is the bias.")
G
gongweibao 已提交
199 200 201
        .SetDefault(2.0)
        .GreaterThan(0.0);

K
kexinzhao 已提交
202 203 204
    AddAttr<T>("alpha",
               "(float, default 0.0001) "
               "alpha is the scale number.")
G
gongweibao 已提交
205 206 207
        .SetDefault(0.0001)
        .GreaterThan(0.0);

K
kexinzhao 已提交
208 209 210
    AddAttr<T>("beta",
               "(float, default 0.75) "
               "beta is the power number.")
G
gongweibao 已提交
211 212
        .SetDefault(0.75)
        .GreaterThan(0.0);
T
Tomasz Patejko 已提交
213 214 215 216 217 218 219 220 221 222
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
223
    AddAttr<bool>("is_test",
224 225
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
226
        .SetDefault(false);
G
gongweibao 已提交
227 228

    AddComment(R"DOC(
K
kexinzhao 已提交
229
Local Response Normalization Operator.
G
gongweibao 已提交
230

231 232
This operator comes from the paper:
<<ImageNet Classification with Deep Convolutional Neural Networks>>.
G
gongweibao 已提交
233

K
kexinzhao 已提交
234
The original formula is:
G
gongweibao 已提交
235

K
kexinzhao 已提交
236 237
$$
Output(i, x, y) = Input(i, x, y) / \left(
X
xiaoting 已提交
238
k + \alpha \sum\limits^{\min(C-1, i + n/2)}_{j = \max(0, i - n/2)}
K
kexinzhao 已提交
239 240 241
(Input(j, x, y))^2
\right)^{\beta}
$$
G
gongweibao 已提交
242

K
kexinzhao 已提交
243
Function implementation:
G
gongweibao 已提交
244

K
kexinzhao 已提交
245 246 247
Inputs and outpus are in NCHW format, while input.shape.ndims() equals 4.
And dimensions 0 ~ 3 represent batch size, feature maps, rows,
and columns, respectively.
G
gongweibao 已提交
248

K
kexinzhao 已提交
249 250
Input and Output in the formula above is for each map(i) of one image, and
Input(i, x, y), Output(i, x, y) represents an element in an image.
G
gongweibao 已提交
251

K
kexinzhao 已提交
252 253 254
C is the number of feature maps of one image. n is a hyper-parameter
configured when operator is initialized. The sum in the denominator
is the sum of the same positions in the neighboring maps.
Q
QI JUN 已提交
255

K
kexinzhao 已提交
256
)DOC");
G
gongweibao 已提交
257 258 259 260 261 262 263 264 265 266
  }
};

class LRNOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
267
    PADDLE_ENFORCE(ctx->HasInput("MidOut"), "Input(MidOut) should not be null");
G
gongweibao 已提交
268 269 270 271 272 273 274
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");

    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
  }

T
Tomasz Patejko 已提交
275
  framework::OpKernelType GetExpectedKernelType(
276
      const framework::ExecutionContext& ctx) const override {
277 278 279 280 281 282 283 284 285 286 287 288 289 290
    framework::LibraryType library_{framework::LibraryType::kPlain};
    std::string data_format = ctx.Attr<std::string>("data_format");
    // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
        layout_, library_);
T
Tomasz Patejko 已提交
291 292
  }
};
G
gongweibao 已提交
293 294 295 296
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
297 298 299 300 301
REGISTER_OPERATOR(
    lrn, ops::LRNOp, ops::LRNOpMaker<float>,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);

302
REGISTER_OPERATOR(lrn_grad, ops::LRNOpGrad);
Q
QI JUN 已提交
303 304 305 306
REGISTER_OP_CPU_KERNEL(
    lrn, ops::LRNKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    lrn_grad, ops::LRNGradKernel<paddle::platform::CPUDeviceContext, float>);