dropout_op.cc 7.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
Xinghai Sun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xinghai Sun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
Xinghai Sun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xinghai Sun 已提交
14

S
sneaxiy 已提交
15
#include <memory>
P
phlrain 已提交
16
#include <string>
17

H
hong 已提交
18
#include "paddle/fluid/framework/infershape_utils.h"
H
hong 已提交
19
#include "paddle/fluid/framework/op_registry.h"
H
hong 已提交
20
#include "paddle/phi/infermeta/binary.h"
X
Xinghai Sun 已提交
21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

using framework::Tensor;

class DropoutOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

M
mapingshuo 已提交
31 32 33 34 35 36
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
  }
37 38

  framework::OpKernelType GetKernelTypeForVar(
39 40
      const std::string& var_name,
      const Tensor& tensor,
41 42 43 44 45 46 47
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "Seed") {
      VLOG(10) << "var_name:" << var_name
               << " does not need to transform in dropout op";
      return expected_kernel_type;
    }

48 49
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
50
  }
X
Xinghai Sun 已提交
51 52 53 54
};

class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
55
  void Make() override {
X
Xinghai Sun 已提交
56
    AddInput("X", "The input of dropout op.");
M
mapingshuo 已提交
57 58 59
    AddInput("Seed",
             "The seed of dropout op, it has higher priority than the attr "
             "fix_seed and seed")
60 61
        .AsDispensable()
        .AsExtra();
X
Xinghai Sun 已提交
62
    AddOutput("Out", "The output of dropout op.");
63 64 65
    AddOutput("Mask", "The random sampled dropout mask.")
        .AsIntermediate()
        .AsExtra();
X
Xinghai Sun 已提交
66

K
Kexin Zhao 已提交
67
    AddAttr<float>("dropout_prob", "Probability of setting units to zero.")
C
chengduoZH 已提交
68 69
        .SetDefault(.5f)
        .AddCustomChecker([](const float& drop_p) {
70 71
          PADDLE_ENFORCE_EQ(drop_p >= 0.0f && drop_p <= 1.0f,
                            true,
72 73
                            platform::errors::InvalidArgument(
                                "'dropout_prob' must be between 0.0 and 1.0."));
74 75
        })
        .SupportTensor();
76 77 78 79
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
P
phlrain 已提交
80 81 82 83 84 85 86 87 88
    AddAttr<std::string>(
        "dropout_implementation",
        "[\"downgrade_in_infer\"|\"upscale_in_train\"]"
        "There are two kinds of ways to implement dropout"
        "(the mask below is a tensor have the same shape with input"
        "the value of mask is 0 or 1, the ratio of 0 is dropout_prob)"
        "1. downgrade_in_infer(default), downgrade the outcome at inference "
        "time"
        "   train: out = input * mask"
C
ceci3 已提交
89
        "   inference: out = input * (1.0 - dropout_prob)"
P
phlrain 已提交
90 91 92 93 94 95 96 97
        "2. upscale_in_train, upscale the outcome at training time, do nothing "
        "in inference"
        "   train: out = input * mask / ( 1.0 - dropout_prob )"
        "   inference: out = input"
        "   dropout op can be removed from the program. the program will be "
        "efficient")
        .SetDefault("downgrade_in_infer")
        .AddCustomChecker([](const std::string& type) {
98
          PADDLE_ENFORCE_EQ(
99 100
              type == "downgrade_in_infer" || type == "upscale_in_train",
              true,
101 102 103
              platform::errors::InvalidArgument(
                  "dropout_implementation can only be downgrade_in_infer or "
                  "upscale_in_train"));
P
phlrain 已提交
104
        });
K
Kexin Zhao 已提交
105

106 107 108
    AddComment(R"DOC(
Dropout Operator.

K
Kexin Zhao 已提交
109
Dropout refers to randomly dropping out units in a nerual network. It is a
110 111
regularization technique for reducing overfitting by preventing neuron
co-adaption during training. The dropout operator randomly set (according to
112
the given dropout probability) the outputs of some units to zero, while others
K
Kexin Zhao 已提交
113 114
are set equal to their corresponding inputs.

115
)DOC");
X
Xinghai Sun 已提交
116 117 118 119 120 121 122
  }
};

class DropoutOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

123
  void InferShape(framework::InferShapeContext* ctx) const override {
124
    OP_INOUT_CHECK(ctx->HasInput("Mask"), "Input", "Mask", "DropoutGrad");
125 126 127 128
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
                   "Input",
                   framework::GradVarName("Out"),
                   "DropoutGrad");
Q
Qiao Longfei 已提交
129 130

    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
S
sneaxiy 已提交
131 132 133 134 135

    ctx->SetOutputDim(framework::GradVarName("X"), out_dims);
    ctx->ShareLoD(framework::GradVarName("Out"),
                  /*->*/ framework::GradVarName("X"));
  }
Z
Zeng Jinle 已提交
136 137 138 139

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
140 141 142
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
Z
Zeng Jinle 已提交
143
  }
S
sneaxiy 已提交
144 145
};

H
hong 已提交
146 147
template <typename T>
class DropoutGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
148
 public:
H
hong 已提交
149
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
150 151

 protected:
152
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
153
    op->SetType("dropout_grad");
H
hong 已提交
154 155 156 157
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("Mask", this->Output("Mask"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
X
Xinghai Sun 已提交
158 159 160
  }
};

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
class DropoutNdOpMaker : public DropoutOpMaker {
 public:
  void Make() override {
    DropoutOpMaker::Make();
    AddAttr<std::vector<int>>("axis",
                              "(std::vector<int>). List of integers,"
                              " indicating the dimensions to be dropout_nd.")
        .SetDefault({});
  }
};

template <typename T>
class DropoutNdGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("dropout_nd_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("Mask", this->Output("Mask"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
  }
};

X
Xinghai Sun 已提交
187 188 189 190
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
191

192 193
DECLARE_INFER_SHAPE_FUNCTOR(dropout,
                            DropoutInferShapeFunctor,
H
hong 已提交
194
                            PD_INFER_META(phi::DropoutInferMeta));
195 196 197
REGISTER_OPERATOR(dropout,
                  ops::DropoutOp,
                  ops::DropoutOpMaker,
H
hong 已提交
198
                  ops::DropoutGradOpMaker<paddle::framework::OpDesc>,
H
hong 已提交
199 200
                  ops::DropoutGradOpMaker<paddle::imperative::OpBase>,
                  DropoutInferShapeFunctor);
201
REGISTER_OPERATOR(dropout_grad, ops::DropoutOpGrad);
202

203 204
DECLARE_INFER_SHAPE_FUNCTOR(dropout_nd,
                            DropoutNdInferShapeFunctor,
205
                            PD_INFER_META(phi::DropoutNdInferMeta));
206 207 208
REGISTER_OPERATOR(dropout_nd,
                  ops::DropoutOp,
                  ops::DropoutNdOpMaker,
209 210 211 212
                  ops::DropoutNdGradOpMaker<paddle::framework::OpDesc>,
                  ops::DropoutNdGradOpMaker<paddle::imperative::OpBase>,
                  DropoutNdInferShapeFunctor);
REGISTER_OPERATOR(dropout_nd_grad, ops::DropoutOpGrad);