roi_pool_op.h 9.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaox 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16 17
#include <algorithm>
#include <limits>
F
FDInSky 已提交
18
#include <vector>
Y
Yi Wang 已提交
19
#include "paddle/fluid/framework/op_registry.h"
F
FDInSky 已提交
20
#include "paddle/fluid/memory/memcpy.h"
Y
Yi Wang 已提交
21
#include "paddle/fluid/operators/math/math_function.h"
W
wanghaox 已提交
22 23 24 25

namespace paddle {
namespace operators {

26 27
static constexpr int kROISize = 4;

Q
QI JUN 已提交
28
template <typename DeviceContext, typename T>
W
wanghaox 已提交
29
class CPUROIPoolOpKernel : public framework::OpKernel<T> {
W
wanghaox 已提交
30 31
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
W
wanghaox 已提交
32
    auto* in = ctx.Input<framework::Tensor>("X");
33
    auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
W
wanghaox 已提交
34 35
    auto* out = ctx.Output<framework::Tensor>("Out");
    auto* argmax = ctx.Output<framework::Tensor>("Argmax");
W
wanghaox 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");

    auto in_dims = in->dims();
    int batch_size = in_dims[0];
    int channels = in_dims[1];
    int height = in_dims[2];
    int width = in_dims[3];
    int rois_num = rois->dims()[0];

    auto in_stride = framework::stride(in_dims);
    auto argmax_stride = framework::stride(argmax->dims());
    auto roi_stride = framework::stride(rois->dims());
W
wanghaox 已提交
51
    auto out_stride = framework::stride(out->dims());
W
wanghaox 已提交
52 53 54

    const T* input_data = in->data<T>();

55 56 57 58 59
    framework::Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({rois_num});
    int* roi_batch_id_data =
        roi_batch_id_list.mutable_data<int>(ctx.GetPlace());

F
FDInSky 已提交
60 61 62 63 64 65
    int rois_batch_size;
    if (ctx.HasInput("RoisLod")) {
      auto* rois_lod_t = ctx.Input<framework::Tensor>("RoisLod");
      rois_batch_size = rois_lod_t->numel();
      PADDLE_ENFORCE_EQ(
          rois_batch_size - 1, batch_size,
66 67
          platform::errors::InvalidArgument("The rois_batch_size and imgs "
                                            "batch_size must be the same."));
F
FDInSky 已提交
68 69 70 71 72 73 74 75 76 77 78
      auto* rois_lod = rois_lod_t->data<int64_t>();
      for (int n = 0; n < rois_batch_size - 1; ++n) {
        for (int i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
          roi_batch_id_data[i] = n;
        }
      }
    } else {
      auto rois_lod = rois->lod().back();
      rois_batch_size = rois_lod.size() - 1;
      PADDLE_ENFORCE_EQ(
          rois_batch_size, batch_size,
79 80
          platform::errors::InvalidArgument("The rois_batch_size and imgs "
                                            "batch_size must be the same."));
F
FDInSky 已提交
81
      int rois_num_with_lod = rois_lod[rois_batch_size];
82 83 84 85
      PADDLE_ENFORCE_EQ(
          rois_num, rois_num_with_lod,
          platform::errors::InvalidArgument("The rois_num from input "
                                            "and lod must be the same."));
F
FDInSky 已提交
86 87 88 89
      for (int n = 0; n < rois_batch_size; ++n) {
        for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
          roi_batch_id_data[i] = n;
        }
90
      }
W
wanghaox 已提交
91 92
    }

93 94 95
    T* output_data = out->mutable_data<T>(ctx.GetPlace());
    int64_t* argmax_data = argmax->mutable_data<int64_t>(ctx.GetPlace());

96
    const T* rois_data = rois->data<T>();
W
wanghaox 已提交
97
    for (int n = 0; n < rois_num; ++n) {
98 99 100 101 102
      int roi_batch_id = roi_batch_id_data[n];
      int roi_start_w = round(rois_data[0] * spatial_scale);
      int roi_start_h = round(rois_data[1] * spatial_scale);
      int roi_end_w = round(rois_data[2] * spatial_scale);
      int roi_end_h = round(rois_data[3] * spatial_scale);
W
wanghaox 已提交
103 104 105 106 107 108 109 110 111 112

      // Force malformed ROIs to be 1x1
      int roi_height = std::max(roi_end_h - roi_start_h + 1, 1);
      int roi_width = std::max(roi_end_w - roi_start_w + 1, 1);

      const float bin_size_h =
          static_cast<float>(roi_height) / static_cast<float>(pooled_height);
      const float bin_size_w =
          static_cast<float>(roi_width) / static_cast<float>(pooled_width);

W
wanghaox 已提交
113
      const T* batch_data = input_data + roi_batch_id * in_stride[0];
W
wanghaox 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

      for (int c = 0; c < channels; ++c) {
        for (int ph = 0; ph < pooled_height; ++ph) {
          for (int pw = 0; pw < pooled_width; ++pw) {
            //  Compute pooling region for this output unit:
            //  start (included) = floor(ph * roi_height / pooled_height_)
            //  end (excluded) = ceil((ph + 1) * roi_height / pooled_height_)
            int hstart =
                static_cast<int>(floor(static_cast<float>(ph) * bin_size_h));
            int wstart =
                static_cast<int>(floor(static_cast<float>(pw) * bin_size_w));
            int hend =
                static_cast<int>(ceil(static_cast<float>(ph + 1) * bin_size_h));
            int wend =
                static_cast<int>(ceil(static_cast<float>(pw + 1) * bin_size_w));

            hstart = std::min(std::max(hstart + roi_start_h, 0), height);
            hend = std::min(std::max(hend + roi_start_h, 0), height);
            wstart = std::min(std::max(wstart + roi_start_w, 0), width);
            wend = std::min(std::max(wend + roi_start_w, 0), width);

            const int pool_index = ph * pooled_width + pw;

            // Define an empty pooling region to be zero
            bool is_empty = (hend <= hstart) || (wend <= wstart);
W
wanghaox 已提交
139
            output_data[pool_index] =
W
wanghaox 已提交
140 141
                is_empty ? 0 : -std::numeric_limits<T>::max();
            argmax_data[pool_index] = -1;
W
wanghaox 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
                const int index = h * width + w;
                if (batch_data[index] > output_data[pool_index]) {
                  output_data[pool_index] = batch_data[index];
                  argmax_data[pool_index] = index;
                }
              }
            }
          }
        }

        batch_data += in_stride[1];
        output_data += out_stride[1];
        argmax_data += argmax_stride[1];
      }
      // Increment ROI data pointer
      rois_data += roi_stride[0];
    }
    return;
  }
};

Q
QI JUN 已提交
166
template <typename DeviceContext, typename T>
W
wanghaox 已提交
167
class CPUROIPoolGradOpKernel : public framework::OpKernel<T> {
W
wanghaox 已提交
168 169
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
W
wanghaox 已提交
170
    auto* in = ctx.Input<framework::Tensor>("X");
171
    auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
W
wanghaox 已提交
172
    auto* argmax = ctx.Input<framework::Tensor>("Argmax");
W
wanghaox 已提交
173
    auto* out_grad =
W
wanghaox 已提交
174
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
G
guosheng 已提交
175
    auto* in_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
W
wanghaox 已提交
176 177 178 179

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");

G
guosheng 已提交
180
    if (in_grad) {
181 182 183 184 185 186
      int rois_num = rois->dims()[0];
      framework::Tensor roi_batch_id_list;
      roi_batch_id_list.Resize({rois_num});
      int* roi_batch_id_data =
          roi_batch_id_list.mutable_data<int>(ctx.GetPlace());

F
FDInSky 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
      int rois_batch_size;
      if (ctx.HasInput("RoisLod")) {
        auto* rois_lod_t = ctx.Input<framework::Tensor>("RoisLod");
        rois_batch_size = rois_lod_t->numel();
        auto* rois_lod = rois_lod_t->data<int64_t>();
        for (int n = 0; n < rois_batch_size - 1; ++n) {
          for (int i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
            roi_batch_id_data[i] = n;
          }
        }
      } else {
        auto rois_lod = rois->lod().back();
        rois_batch_size = rois_lod.size() - 1;
        for (int n = 0; n < rois_batch_size; ++n) {
          for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
            roi_batch_id_data[i] = n;
          }
204 205 206
        }
      }

207
      const T* rois_data = rois->data<T>();
G
guosheng 已提交
208 209 210
      const T* out_grad_data = out_grad->data<T>();
      const int64_t* argmax_data = argmax->data<int64_t>();
      T* in_grad_data = in_grad->mutable_data<T>(ctx.GetPlace());
Q
QI JUN 已提交
211 212 213
      math::SetConstant<DeviceContext, T> set_zero;
      set_zero(ctx.template device_context<DeviceContext>(), in_grad,
               static_cast<T>(0));
W
wanghaox 已提交
214

G
guosheng 已提交
215 216 217 218
      auto in_stride = framework::stride(in->dims());
      auto argmax_stride = framework::stride(argmax->dims());
      auto roi_stride = framework::stride(rois->dims());
      auto out_stride = framework::stride(out_grad->dims());
W
wanghaox 已提交
219

G
guosheng 已提交
220
      int channels = in->dims()[1];
W
wanghaox 已提交
221

G
guosheng 已提交
222
      for (int n = 0; n < rois_num; ++n) {
223
        int roi_batch_idx = roi_batch_id_data[n];
G
guosheng 已提交
224
        T* batch_grad_data = in_grad_data + roi_batch_idx * in_stride[0];
W
wanghaox 已提交
225 226 227
        for (int c = 0; c < channels; ++c) {
          for (int ph = 0; ph < pooled_height; ++ph) {
            for (int pw = 0; pw < pooled_width; ++pw) {
G
guosheng 已提交
228
              int pool_index = ph * pooled_width + pw;
W
wanghaox 已提交
229
              if (argmax_data[pool_index] >= 0) {
G
guosheng 已提交
230
                auto index = argmax_data[pool_index];
W
wanghaox 已提交
231 232 233 234
                batch_grad_data[index] += out_grad_data[pool_index];
              }
            }
          }
G
guosheng 已提交
235 236 237
          batch_grad_data += in_stride[1];
          out_grad_data += out_stride[1];
          argmax_data += argmax_stride[1];
W
wanghaox 已提交
238
        }
G
guosheng 已提交
239
        rois_data += roi_stride[0];
W
wanghaox 已提交
240 241 242 243 244 245 246
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle