roi_pool_op.h 9.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaox 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16 17
#include <algorithm>
#include <limits>
F
FDInSky 已提交
18
#include <vector>
Y
Yi Wang 已提交
19
#include "paddle/fluid/framework/op_registry.h"
F
FDInSky 已提交
20
#include "paddle/fluid/memory/memcpy.h"
Y
Yi Wang 已提交
21
#include "paddle/fluid/operators/math/math_function.h"
W
wanghaox 已提交
22 23 24 25

namespace paddle {
namespace operators {

26 27
static constexpr int kROISize = 4;

Q
QI JUN 已提交
28
template <typename DeviceContext, typename T>
W
wanghaox 已提交
29
class CPUROIPoolOpKernel : public framework::OpKernel<T> {
W
wanghaox 已提交
30 31
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
W
wanghaox 已提交
32
    auto* in = ctx.Input<framework::Tensor>("X");
33
    auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
W
wanghaox 已提交
34 35
    auto* out = ctx.Output<framework::Tensor>("Out");
    auto* argmax = ctx.Output<framework::Tensor>("Argmax");
W
wanghaox 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");

    auto in_dims = in->dims();
    int batch_size = in_dims[0];
    int channels = in_dims[1];
    int height = in_dims[2];
    int width = in_dims[3];
    int rois_num = rois->dims()[0];

    auto in_stride = framework::stride(in_dims);
    auto argmax_stride = framework::stride(argmax->dims());
    auto roi_stride = framework::stride(rois->dims());
W
wanghaox 已提交
51
    auto out_stride = framework::stride(out->dims());
W
wanghaox 已提交
52 53 54

    const T* input_data = in->data<T>();

55 56 57 58 59
    framework::Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({rois_num});
    int* roi_batch_id_data =
        roi_batch_id_list.mutable_data<int>(ctx.GetPlace());

F
FDInSky 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
    int rois_batch_size;
    if (ctx.HasInput("RoisLod")) {
      auto* rois_lod_t = ctx.Input<framework::Tensor>("RoisLod");
      rois_batch_size = rois_lod_t->numel();
      PADDLE_ENFORCE_EQ(
          rois_batch_size - 1, batch_size,
          "The rois_batch_size and imgs batch_size must be the same.");
      auto* rois_lod = rois_lod_t->data<int64_t>();
      for (int n = 0; n < rois_batch_size - 1; ++n) {
        for (int i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
          roi_batch_id_data[i] = n;
        }
      }
    } else {
      auto rois_lod = rois->lod().back();
      rois_batch_size = rois_lod.size() - 1;
      PADDLE_ENFORCE_EQ(
          rois_batch_size, batch_size,
          "The rois_batch_size and imgs batch_size must be the same.");
      int rois_num_with_lod = rois_lod[rois_batch_size];
      PADDLE_ENFORCE_EQ(rois_num, rois_num_with_lod,
                        "The rois_num from input and lod must be the same.");
      for (int n = 0; n < rois_batch_size; ++n) {
        for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
          roi_batch_id_data[i] = n;
        }
86
      }
W
wanghaox 已提交
87 88
    }

89 90 91
    T* output_data = out->mutable_data<T>(ctx.GetPlace());
    int64_t* argmax_data = argmax->mutable_data<int64_t>(ctx.GetPlace());

92
    const T* rois_data = rois->data<T>();
W
wanghaox 已提交
93
    for (int n = 0; n < rois_num; ++n) {
94 95 96 97 98
      int roi_batch_id = roi_batch_id_data[n];
      int roi_start_w = round(rois_data[0] * spatial_scale);
      int roi_start_h = round(rois_data[1] * spatial_scale);
      int roi_end_w = round(rois_data[2] * spatial_scale);
      int roi_end_h = round(rois_data[3] * spatial_scale);
W
wanghaox 已提交
99 100 101 102 103 104 105 106 107 108

      // Force malformed ROIs to be 1x1
      int roi_height = std::max(roi_end_h - roi_start_h + 1, 1);
      int roi_width = std::max(roi_end_w - roi_start_w + 1, 1);

      const float bin_size_h =
          static_cast<float>(roi_height) / static_cast<float>(pooled_height);
      const float bin_size_w =
          static_cast<float>(roi_width) / static_cast<float>(pooled_width);

W
wanghaox 已提交
109
      const T* batch_data = input_data + roi_batch_id * in_stride[0];
W
wanghaox 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

      for (int c = 0; c < channels; ++c) {
        for (int ph = 0; ph < pooled_height; ++ph) {
          for (int pw = 0; pw < pooled_width; ++pw) {
            //  Compute pooling region for this output unit:
            //  start (included) = floor(ph * roi_height / pooled_height_)
            //  end (excluded) = ceil((ph + 1) * roi_height / pooled_height_)
            int hstart =
                static_cast<int>(floor(static_cast<float>(ph) * bin_size_h));
            int wstart =
                static_cast<int>(floor(static_cast<float>(pw) * bin_size_w));
            int hend =
                static_cast<int>(ceil(static_cast<float>(ph + 1) * bin_size_h));
            int wend =
                static_cast<int>(ceil(static_cast<float>(pw + 1) * bin_size_w));

            hstart = std::min(std::max(hstart + roi_start_h, 0), height);
            hend = std::min(std::max(hend + roi_start_h, 0), height);
            wstart = std::min(std::max(wstart + roi_start_w, 0), width);
            wend = std::min(std::max(wend + roi_start_w, 0), width);

            const int pool_index = ph * pooled_width + pw;

            // Define an empty pooling region to be zero
            bool is_empty = (hend <= hstart) || (wend <= wstart);
W
wanghaox 已提交
135
            output_data[pool_index] =
W
wanghaox 已提交
136 137
                is_empty ? 0 : -std::numeric_limits<T>::max();
            argmax_data[pool_index] = -1;
W
wanghaox 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
                const int index = h * width + w;
                if (batch_data[index] > output_data[pool_index]) {
                  output_data[pool_index] = batch_data[index];
                  argmax_data[pool_index] = index;
                }
              }
            }
          }
        }

        batch_data += in_stride[1];
        output_data += out_stride[1];
        argmax_data += argmax_stride[1];
      }
      // Increment ROI data pointer
      rois_data += roi_stride[0];
    }
    return;
  }
};

Q
QI JUN 已提交
162
template <typename DeviceContext, typename T>
W
wanghaox 已提交
163
class CPUROIPoolGradOpKernel : public framework::OpKernel<T> {
W
wanghaox 已提交
164 165
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
W
wanghaox 已提交
166
    auto* in = ctx.Input<framework::Tensor>("X");
167
    auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
W
wanghaox 已提交
168
    auto* argmax = ctx.Input<framework::Tensor>("Argmax");
W
wanghaox 已提交
169
    auto* out_grad =
W
wanghaox 已提交
170
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
G
guosheng 已提交
171
    auto* in_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
W
wanghaox 已提交
172 173 174 175

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");

G
guosheng 已提交
176
    if (in_grad) {
177 178 179 180 181 182
      int rois_num = rois->dims()[0];
      framework::Tensor roi_batch_id_list;
      roi_batch_id_list.Resize({rois_num});
      int* roi_batch_id_data =
          roi_batch_id_list.mutable_data<int>(ctx.GetPlace());

F
FDInSky 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
      int rois_batch_size;
      if (ctx.HasInput("RoisLod")) {
        auto* rois_lod_t = ctx.Input<framework::Tensor>("RoisLod");
        rois_batch_size = rois_lod_t->numel();
        auto* rois_lod = rois_lod_t->data<int64_t>();
        for (int n = 0; n < rois_batch_size - 1; ++n) {
          for (int i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
            roi_batch_id_data[i] = n;
          }
        }
      } else {
        auto rois_lod = rois->lod().back();
        rois_batch_size = rois_lod.size() - 1;
        for (int n = 0; n < rois_batch_size; ++n) {
          for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
            roi_batch_id_data[i] = n;
          }
200 201 202
        }
      }

203
      const T* rois_data = rois->data<T>();
G
guosheng 已提交
204 205 206
      const T* out_grad_data = out_grad->data<T>();
      const int64_t* argmax_data = argmax->data<int64_t>();
      T* in_grad_data = in_grad->mutable_data<T>(ctx.GetPlace());
Q
QI JUN 已提交
207 208 209
      math::SetConstant<DeviceContext, T> set_zero;
      set_zero(ctx.template device_context<DeviceContext>(), in_grad,
               static_cast<T>(0));
W
wanghaox 已提交
210

G
guosheng 已提交
211 212 213 214
      auto in_stride = framework::stride(in->dims());
      auto argmax_stride = framework::stride(argmax->dims());
      auto roi_stride = framework::stride(rois->dims());
      auto out_stride = framework::stride(out_grad->dims());
W
wanghaox 已提交
215

G
guosheng 已提交
216
      int channels = in->dims()[1];
W
wanghaox 已提交
217

G
guosheng 已提交
218
      for (int n = 0; n < rois_num; ++n) {
219
        int roi_batch_idx = roi_batch_id_data[n];
G
guosheng 已提交
220
        T* batch_grad_data = in_grad_data + roi_batch_idx * in_stride[0];
W
wanghaox 已提交
221 222 223
        for (int c = 0; c < channels; ++c) {
          for (int ph = 0; ph < pooled_height; ++ph) {
            for (int pw = 0; pw < pooled_width; ++pw) {
G
guosheng 已提交
224
              int pool_index = ph * pooled_width + pw;
W
wanghaox 已提交
225
              if (argmax_data[pool_index] >= 0) {
G
guosheng 已提交
226
                auto index = argmax_data[pool_index];
W
wanghaox 已提交
227 228 229 230
                batch_grad_data[index] += out_grad_data[pool_index];
              }
            }
          }
G
guosheng 已提交
231 232 233
          batch_grad_data += in_stride[1];
          out_grad_data += out_stride[1];
          argmax_data += argmax_stride[1];
W
wanghaox 已提交
234
        }
G
guosheng 已提交
235
        rois_data += roi_stride[0];
W
wanghaox 已提交
236 237 238 239 240 241 242
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle