reducer.cc 39.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/collective/reducer.h"

namespace paddle {
namespace distributed {

20 21 22 23 24 25 26 27
static Backend TransToBackend(platform::Place place) {
  static const std::map<phi::AllocationType, Backend> type_backend = {
      {phi::AllocationType::GPU, Backend::GPU},
      {phi::AllocationType::CPU, Backend::CPU},
  };

  phi::AllocationType type = place.GetType();
  auto it = type_backend.find(type);
28 29
  PADDLE_ENFORCE_EQ(it != type_backend.end(),
                    true,
30 31 32 33 34
                    platform::errors::InvalidArgument(
                        "Place type (%s) is not supported. ", place));
  return it->second;
}

35 36 37 38 39 40
std::vector<std::vector<size_t>> Eager_AssignGroupBySize(
    const std::vector<Tensor> tensors,
    const std::vector<bool> &is_sparse_gradient,
    const std::vector<size_t> &group_size_limits,
    const std::vector<int64_t> &tensor_indices) {
  PADDLE_ENFORCE_EQ(
41 42
      tensors.size(),
      is_sparse_gradient.size(),
43 44 45
      platform::errors::PreconditionNotMet(
          "tensors len must be equal to is_sparse_gradient len, but "
          "[%lu] != [%lu]",
46 47
          tensors.size(),
          is_sparse_gradient.size()));
48 49 50 51 52 53 54 55 56 57 58 59
  auto check_perm = [](const std::vector<int64_t> &x) -> bool {
    size_t len = x.size();
    std::vector<size_t> cnt(len, 0);
    for (size_t i = 0; i < len; ++i) {
      if (x[i] >= static_cast<int64_t>(len) || x[i] < 0 || cnt[x[i]]) {
        return false;
      }
      cnt[x[i]]++;
    }
    return true;
  };

60 61
  PADDLE_ENFORCE_EQ(true,
                    check_perm(tensor_indices),
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
                    platform::errors::PreconditionNotMet(
                        "tensor_indices must be a permutation from 0 to %lu",
                        tensor_indices.size()));
  // the return vector
  std::vector<std::vector<size_t>> res;

  // Key: the var type
  // Value: should use which index in group_size_limits for group size limit
  std::map<experimental::DataType, size_t> group_limit_index;

  // Key: the var type
  // Value: <the var index in input tensors, total numel in this group>
  std::map<experimental::DataType, std::pair<std::vector<size_t>, size_t>>
      next_group;

  for (size_t i = 0; i < tensors.size(); ++i) {
    const auto &var = tensors[i];

    size_t tensor_real_index = i;
    if (!tensor_indices.empty()) {
      tensor_real_index = tensor_indices[i];
    }

    if (is_sparse_gradient[tensor_real_index]) {
      // we keep sparse var a single group
      res.push_back({tensor_real_index});
      continue;
    }

    const auto &var_dtype = var.dtype();
    VLOG(3) << "var[" << var.name() << "] 's type is " << var_dtype;
    auto &group_info = next_group[var_dtype];

    int64_t var_size = -1;

    if (var.is_dense_tensor()) {
      var_size =
          std::dynamic_pointer_cast<phi::DenseTensor>(var.impl())->numel();
    } else {
      VLOG(3) << "var " << var.name()
              << " is not tensor or selected_rows, so skip it";
      continue;
    }

    group_info.first.push_back(tensor_real_index);
    group_info.second += experimental::SizeOf(var_dtype) * var_size;
    // group_info.second += framework::SizeOfType(var_dtype) * var_size;

    if (group_limit_index.find(var_dtype) == group_limit_index.end()) {
      // means it is the first var of var_dtype
      group_limit_index[var_dtype] = 0;
    }
    auto &cur_limit_index = group_limit_index[var_dtype];
    if (group_info.second >= group_size_limits[cur_limit_index]) {
      // exceed group capacity and create a new group
      res.emplace_back(std::move(group_info.first));
      group_info = std::pair<std::vector<size_t>, size_t>();
      cur_limit_index =
          (std::min)(cur_limit_index + 1, group_size_limits.size() - 1);
    }
  }

  // add the final groups
  for (auto &e : next_group) {
    auto &group_info = e.second;
    if (!group_info.first.empty()) {
      res.emplace_back(std::move(group_info.first));
    }
  }

  for (const auto &group_index : res) {
    PADDLE_ENFORCE_NE(
134 135
        group_index.empty(),
        true,
136 137 138 139
        platform::errors::PreconditionNotMet(
            "AssignGroupBySize construct empty group, please check."));
  }
  if (tensor_indices.empty()) {
140 141
    std::sort(res.begin(),
              res.end(),
142 143 144 145 146 147 148
              [](const std::vector<size_t> &x, const std::vector<size_t> &y) {
                return x.front() < y.front();
              });
  }
  return res;
}

149 150 151 152 153 154 155
template <typename DeviceContext, typename T>
static void ConcatTensorsForAllReduce(
    const DeviceContext &context,
    const std::vector<phi::DenseTensor> &dense_tensors_,
    Tensor *p_dense_contents) {
  operators::math::ConcatFunctor<DeviceContext, T> concat_functor_;
  concat_functor_(
156 157 158
      context,
      dense_tensors_,
      0,
159 160 161 162 163 164
      std::dynamic_pointer_cast<phi::DenseTensor>(p_dense_contents->impl())
          .get());
}

template <typename DeviceContext, typename T>
static void SplitTensorsForAllReduce(
165 166
    const DeviceContext &context,
    Tensor *p_dense_contents,
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    std::vector<phi::DenseTensor> *p_dense_tensors) {
  auto *in =
      std::dynamic_pointer_cast<phi::DenseTensor>(p_dense_contents->impl())
          .get();
  std::vector<phi::DenseTensor *> outs;
  std::vector<const phi::DenseTensor *> shape_refer;

  outs.reserve(p_dense_tensors->size());
  shape_refer.reserve(p_dense_tensors->size());

  for (auto &tensor : *p_dense_tensors) {
    outs.emplace_back(&tensor);
    shape_refer.emplace_back(&tensor);
  }

  operators::math::SplitFunctor<DeviceContext, T> split_functor_;
  split_functor_(context, *in, shape_refer, 0, &outs);
}

// context is used to select the stream for concat
template <typename DeviceContext>
static void ConcatTensorsWithType(
    const DeviceContext &context,
    const std::vector<phi::DenseTensor> &dense_tensors_,
191 192
    Tensor *p_dense_contents,
    phi::DataType type) {
193 194 195 196 197 198
  switch (type) {
    case phi::DataType::FLOAT16:
      ConcatTensorsForAllReduce<DeviceContext, platform::float16>(
          context, dense_tensors_, p_dense_contents);
      break;
    case phi::DataType::FLOAT32:
199 200
      ConcatTensorsForAllReduce<DeviceContext, float>(
          context, dense_tensors_, p_dense_contents);
201 202
      break;
    case phi::DataType::FLOAT64:
203 204
      ConcatTensorsForAllReduce<DeviceContext, double>(
          context, dense_tensors_, p_dense_contents);
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it concats tensors for "
          "allreduce.",
          type));
  }
}

// context is used to select the stream for split
template <typename DeviceContext>
static void SplitTensorsWithType(const DeviceContext &context,
                                 Tensor *p_dense_contents,
                                 std::vector<phi::DenseTensor> *p_dense_tensors,
                                 phi::DataType type) {
  switch (type) {
    case phi::DataType::FLOAT16:
      SplitTensorsForAllReduce<DeviceContext, platform::float16>(
          context, p_dense_contents, p_dense_tensors);
      break;
    case phi::DataType::FLOAT32:
226 227
      SplitTensorsForAllReduce<DeviceContext, float>(
          context, p_dense_contents, p_dense_tensors);
228 229
      break;
    case phi::DataType::FLOAT64:
230 231
      SplitTensorsForAllReduce<DeviceContext, double>(
          context, p_dense_contents, p_dense_tensors);
232 233 234 235 236 237 238 239 240 241 242 243
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Data type (%s) is not supported when it splits tensors for "
          "allreduce.",
          type));
  }
}

void EagerGroup::ConcatTensors(const platform::Place &place) {
  if (platform::is_gpu_place(place)) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
L
Leo Chen 已提交
244
    auto *default_ctx = static_cast<phi::GPUContext *>(
245
        platform::DeviceContextPool::Instance().Get(place));
246 247
    ConcatTensorsWithType(
        *default_ctx, dense_tensors_, &dense_contents_, dtype_);
248 249 250 251 252 253
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
#endif
  } else if (platform::is_cpu_place(place)) {
L
Leo Chen 已提交
254
    auto *default_ctx = static_cast<phi::CPUContext *>(
255
        platform::DeviceContextPool::Instance().Get(place));
256 257
    ConcatTensorsWithType(
        *default_ctx, dense_tensors_, &dense_contents_, dtype_);
258 259 260 261 262 263 264 265 266
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Concat grad tensor not supported on place (%s)", place));
  }
}

void EagerGroup::SplitTensors(const platform::Place &place) {
  if (platform::is_gpu_place(place)) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
L
Leo Chen 已提交
267
    auto *default_ctx = static_cast<phi::GPUContext *>(
268
        platform::DeviceContextPool::Instance().Get(place));
269 270
    SplitTensorsWithType(
        *default_ctx, &dense_contents_, &dense_tensors_, dtype_);
271 272 273 274 275 276
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't split grad tensor since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
#endif
  } else if (platform::is_cpu_place(place)) {
L
Leo Chen 已提交
277
    auto *default_ctx = static_cast<phi::CPUContext *>(
278
        platform::DeviceContextPool::Instance().Get(place));
279 280
    SplitTensorsWithType(
        *default_ctx, &dense_contents_, &dense_tensors_, dtype_);
281 282 283 284 285 286 287 288 289 290 291
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Split grad tensor not supported on place (%s)", place));
  }
}

EagerReducer::EagerReducer(
    const std::vector<Tensor> tensors,
    const std::vector<std::vector<size_t>> &group_indices,
    const std::vector<bool> &is_sparse_gradient,
    std::shared_ptr<distributed::ProcessGroup> process_group,
292 293
    const std::vector<size_t> &group_size_limits,
    bool find_unused_parameters)
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
    : tensors_(tensors),
      group_indices_(group_indices),
      is_sparse_gradient_(is_sparse_gradient),
      process_group_(process_group),
      group_size_limits_(group_size_limits),
      find_unused_vars_each_step_(find_unused_parameters) {
  VLOG(3) << "Start construct the Reducer ...";

  nranks_ = process_group_->GetSize();

  // initialize groups
  InitializeGroups(group_indices);

  for (size_t global_var_index = 0; global_var_index < tensors_.size();
       ++global_var_index) {
    auto tensor = tensors_[global_var_index];
    auto reduce_hook = [=](void) -> void {
      this->AddDistHook(global_var_index);
    };

    const auto &grad_node = GetGradNodeFromTensor(&tensor);

    PADDLE_ENFORCE(
        grad_node.get() != nullptr,
        paddle::platform::errors::Fatal("Detected NULL grad_node,"
                                        "Leaf tensor should have had grad_node "
                                        "with type: GradNodeAccumulation"));
    const auto &accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    accumulation_grad_node->RegisterReduceHook(
324
        std::make_shared<egr::CppVoidHook>(reduce_hook));
325 326

    gradnode_index_map_[grad_node.get()] = global_var_index;
327 328 329 330
  }

  vars_marked_ready_.resize(tensors_.size(), false);
  local_used_vars_.resize(tensors_.size(), 0);
331 332 333

  if (find_unused_vars_each_step_) {
    global_used_vars_ = paddle::experimental::empty(
334 335
        IntArray({static_cast<int32_t>(tensors_.size())}),
        DataType::INT32,
336
        inner_place_);
337
  }
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
}

std::shared_ptr<egr::GradNodeBase> EagerReducer::GetGradNodeFromTensor(
    Tensor *tensor) {
  auto *autograd_meta = tensor->get_autograd_meta();
  const auto &grad_node =
      static_cast<egr::AutogradMeta *>(autograd_meta)->GetMutableGradNode();
  return grad_node;
}

void EagerReducer::InitializeGroups(
    const std::vector<std::vector<size_t>> &group_indices) {
  VLOG(3) << "Start initialize groups ..";

  // clear the group
  groups_.clear();
  groups_.reserve(group_indices.size());

  variable_locators_.clear();
  variable_locators_.resize(tensors_.size());

  auto group_nums = group_indices.size();
  for (size_t group_index = 0; group_index < group_nums; ++group_index) {
    const auto &tensor_indices_ = group_indices[group_index];
    PADDLE_ENFORCE_GT(
363 364
        tensor_indices_.size(),
        0,
365 366 367 368 369 370 371 372 373 374 375
        platform::errors::PreconditionNotMet(
            "The number of group[%d]'s elements is 0.", group_index));

    EagerGroup group;

    // It's just for check the sparse or dense
    auto first_var = tensors_[tensor_indices_.front()];
    if (tensor_indices_.size() == 1 &&
        is_sparse_gradient_[tensor_indices_.front()]) {
      // process the sparse gradient. one sparse, one group
      group.dtype_ = first_var.dtype();
376
      group.is_sparse_ = true;
377 378 379 380
    } else {
      // process the dense gradient.
      InitializeDenseGroups(tensor_indices_, &group);
      group.dense_contents_ = paddle::experimental::empty(
381
          IntArray({group.all_length_}), group.dtype_, inner_place_);
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
    }

    // map tensors to this group by VariableLocator
    size_t inside_group_index = 0;
    for (const auto var_index : tensor_indices_) {
      TensorLocator tensor_locator;
      tensor_locator.group_index = group_index;
      tensor_locator.inside_group_index = inside_group_index++;
      variable_locators_[var_index] = tensor_locator;
    }
    group.tensor_indices_ = std::move(tensor_indices_);
    groups_.emplace_back(std::move(group));

    VLOG(3) << "The Group[" << group_index << "]:" << groups_.back();
  }
}

void EagerReducer::InitializeDenseGroups(
    const std::vector<size_t> &tensor_indices_, EagerGroup *p_group) {
  VLOG(3) << "InitializeDenseGroups.";
  int64_t all_length = 0;
  for (size_t index = 0; index < tensor_indices_.size(); ++index) {
    auto tensor_index = tensor_indices_[index];
    auto &tensor = tensors_[tensor_index];
    auto &tensor_name = tensor.name();

408 409
    PADDLE_ENFORCE_EQ(is_sparse_gradient_[tensor_index],
                      false,
410 411 412 413 414
                      platform::errors::PreconditionNotMet(
                          "Tensor %s's GRAD must be Tensor, but received "
                          "GRAD is SelectedRows",
                          tensor_name));

415 416
    PADDLE_ENFORCE_EQ(tensor.initialized(),
                      true,
417 418 419 420
                      platform::errors::PreconditionNotMet(
                          "Tensor %s is not initialized.", tensor_name));
    const auto size = tensor.numel();
    PADDLE_ENFORCE_GT(
421 422
        size,
        0,
423 424
        platform::errors::PreconditionNotMet(
            "The number of tensor %s's elements is 0.", tensor_name));
425 426 427 428 429
    all_length += size;

    p_group->length_.push_back(size);

    // for concat operator
430
    p_group->origin_shapes_.push_back(IntArray(tensor.shape()));
431 432 433 434 435
    p_group->dense_tensors_.push_back(phi::DenseTensor());

    const auto &dtype = tensor.dtype();
    const auto &inner_place = tensor.impl()->place();
    if (index > 0) {
436 437
      PADDLE_ENFORCE_EQ(dtype,
                        p_group->dtype_,
438 439 440 441 442 443 444 445 446 447
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has unexpected dtype.", tensor_name));
    } else {
      p_group->dtype_ = dtype;
      inner_place_ = inner_place;
    }
  }
  p_group->all_length_ = all_length;
}

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
void EagerReducer::TraverseBackwardGraph(const std::vector<Tensor> &outputs) {
  std::queue<egr::GradNodeBase *> queue;
  std::set<egr::GradNodeBase *> visited;

  for (const auto &output : outputs) {
    auto *auto_grad_meta =
        static_cast<egr::AutogradMeta *>(output.get_autograd_meta());
    if (!auto_grad_meta) continue;
    auto shared_grad_node = auto_grad_meta->GetMutableGradNode();
    if (shared_grad_node == nullptr || shared_grad_node.get() == nullptr ||
        auto_grad_meta->StopGradient()) {
      continue;
    }
    egr::GradNodeBase *grad_node = shared_grad_node.get();
    queue.emplace(grad_node);
  }

  while (!queue.empty()) {
    egr::GradNodeBase *node = queue.front();
    queue.pop();
468 469 470 471 472 473
    const paddle::small_vector<std::vector<egr::GradSlotMeta>,
                               egr::kSlotSmallVectorSize> &metas =
        node->OutputMeta();
    for (size_t i = 0; i < metas.size(); i++) {
      for (size_t j = 0; j < metas[i].size(); j++) {
        const egr::Edge &edge = metas[i][j].GetEdge();
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
        auto next_node_shared = edge.GetMutableGradNode();
        if (!next_node_shared || !next_node_shared.get()) {
          continue;
        }
        auto *next_node = next_node_shared.get();
        const bool was_inserted = visited.insert(next_node).second;
        if (was_inserted) {
          queue.emplace(next_node);
        }
      }
    }
  }

  for (const auto &it : gradnode_index_map_) {
    if (visited.count(it.first) == 0) {
      unused_vars_.push_back(it.second);
      VLOG(3) << "[Rank " << process_group_->GetRank() << "]: "
              << "Tensor " << tensors_[it.second].name() << " at index "
              << it.second << " is marked as unused.";
    }
  }
}

497 498 499 500 501 502
void EagerReducer::PrepareForBackward(const std::vector<Tensor> &outputs) {
  VLOG(3) << "after forward, then reset count for backward.";
  grad_need_hooks_ = true;
  next_group_ = 0;
  std::for_each(groups_.begin(), groups_.end(), [](EagerGroup &group) {
    group.pending_ = group.tensor_indices_.size();
503
    group.sparse_contents_ = Tensor();
504 505 506 507 508
  });

  // reinitialize vars_marked_ready_ for next iteration
  vars_marked_ready_.clear();
  vars_marked_ready_.resize(tensors_.size(), false);
509 510

  PADDLE_ENFORCE_EQ(
511 512
      groups_need_finalize_,
      false,
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
      platform::errors::PreconditionNotMet(
          "A serious error has occurred here. Please "
          "set find_unused_parameters=True to traverse backward graph "
          "in each step to prepare reduce in advance. If you have "
          "set, There may be several reasons for this error: "
          "1) Please note that all forward outputs derived from the module "
          "parameters must participate in the calculation of losses and "
          "subsequent gradient calculations. If not, the wrapper will hang, "
          "waiting for autograd to generate gradients for these parameters. "
          "you can use detach or stop_gradient to make the unused parameters "
          "detached from the autograd graph. "
          "2) Used multiple forwards and one backward. You may be able to wrap "
          "multiple forwards in a model."));

  // The first var to trigger the unused parameter
  has_marked_unused_vars_ = false;

  if (find_unused_vars_once_ || find_unused_vars_each_step_) {
    unused_vars_.clear();
    TraverseBackwardGraph(outputs);
    // only check once in first step
    find_unused_vars_once_ = false;
  }

  if (find_unused_vars_each_step_ && unused_vars_.empty()) {
    LOG_FIRST_N(WARNING, 1)
        << "All parameters are involved in the backward pass. "
           "It is recommended to set find_unused_parameters to False "
           "to improve performance. However, if unused parameters "
           "appear in subsequent iterative training, then an error "
           "will occur. Please make it clear that in the subsequent "
           "training, there will be no parameters that are not used "
           "in the backward pass, and then set find_unused_parameters";
  }

  if (unused_vars_.size() == tensors_.size()) {
    LOG_FIRST_N(WARNING, 1)
        << "There is no parameter in the device involved "
           "in the backward calculation. If there are "
           "parameters on other devices involved in the "
           "backward, then a serious error will occur here.";
  }
555 556 557
}

void EagerReducer::AddDistHook(size_t var_index) {
558 559
  PADDLE_ENFORCE_LT(var_index,
                    variable_locators_.size(),
560 561 562
                    platform::errors::OutOfRange(
                        "Out of bounds variable index. it must be less"
                        "than %d, but it is %d",
563 564
                        variable_locators_.size(),
                        var_index));
565 566 567 568 569 570

  // gradient synchronization is not required when grad_need_hooks_ is false.
  if (!grad_need_hooks_) {
    return;
  }

571 572
  VLOG(3) << "Tensor[" << var_index << "] [" << tensors_[var_index].name()
          << "@Grad] arrived and triggered disthook";
573 574 575

  local_used_vars_[var_index] = 1;

576 577 578 579 580 581
  if (!has_marked_unused_vars_) {
    has_marked_unused_vars_ = true;
    for (const auto unused_index : unused_vars_) {
      MarkVarReady(unused_index, false);
    }
  }
582 583 584 585 586
  MarkVarReady(var_index, true);
}

void EagerReducer::MarkVarReady(const size_t var_index,
                                const bool is_used_var) {
587 588 589 590 591 592 593 594 595 596 597 598 599
  VLOG(3) << "Tensor[" << var_index << "][" << tensors_[var_index].name()
          << "] is marked ready.";
  // error happened, if the var is ready before.
  if (vars_marked_ready_[var_index]) {
    auto error_info = string::Sprintf(
        "Error happened, when parameter[%d][%s] has been ready before. "
        "Please set find_unused_parameters=True to traverse backward graph "
        "in each step to prepare reduce in advance. If you have set, "
        "there may be several reasons for this error: "
        "1) In multiple reentrant backward phase, some parameters are reused."
        "2) Using model parameters outside of forward function. Please "
        "make sure that model parameters are not shared in concurrent "
        "forward-backward passes.",
600 601
        var_index,
        tensors_[var_index].name());
602

603 604
    PADDLE_ENFORCE_EQ(has_marked_unused_vars_,
                      false,
605 606 607 608 609 610 611 612 613 614 615 616 617 618
                      platform::errors::PreconditionNotMet(error_info));

    error_info +=
        "3) Unused parameters retrieval is incorrect. "
        "The return value of forward will be used to retrieve"
        " the unused parameters of the entire model. These "
        "gradients of unused parameters will not be synchronized "
        "between multiple cards. However, if the unused "
        "parameters participate in the backward calculation "
        "again at a later time (e.g. after the forward function, "
        "the loss calculation uses the unused "
        "paramters of the forward and trigger backward), "
        "its gradient will be wrong.";

619 620
    PADDLE_ENFORCE_EQ(has_marked_unused_vars_,
                      true,
621 622 623 624 625 626
                      platform::errors::PreconditionNotMet(error_info));
  } else {
    vars_marked_ready_[var_index] = true;
  }
  groups_need_finalize_ = true;

627 628 629 630 631 632
  const auto &var_locator = variable_locators_[var_index];
  const auto group_index = var_locator.group_index;
  const auto inside_group_index = var_locator.inside_group_index;

  auto &group = groups_[group_index];
  auto &group_tensor = group.dense_tensors_[inside_group_index];
633 634
  const auto length = group.length_[inside_group_index];

635 636 637 638 639
  if (!group.is_sparse_) {
    if (is_used_var) {
      auto *autograd_meta = tensors_[var_index].get_autograd_meta();
      auto &grad_tensor =
          static_cast<egr::AutogradMeta *>(autograd_meta)->Grad();
640 641
      group_tensor
          .ShareDataWith(*(
642 643
              std::dynamic_pointer_cast<phi::DenseTensor>(grad_tensor.impl())))
          .Resize({grad_tensor.numel()});
644
    } else {
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
      // TODO(shenliang03): maybe save the memory by avoiding tensor
      // construction
      if (!group_tensor.initialized()) {
        group_tensor.Resize({static_cast<int64_t>(length)});
        group_tensor.mutable_data(inner_place_, group.dtype_);
      }
      if (HasGrad(var_index)) {
        VLOG(3) << "Tensor[" << tensors_[var_index].name() << "] has grad";
        auto grad_tensor = egr::EagerUtils::mutable_grad(tensors_[var_index]);
        group_tensor
            .ShareDataWith(*(std::dynamic_pointer_cast<phi::DenseTensor>(
                grad_tensor->impl())))
            .Resize({length});
      } else {
        VLOG(3) << "Tensor[" << tensors_[var_index].name()
                << "] doesn't have grad";
        auto *dev_ctx =
            platform::DeviceContextPool::Instance().Get(inner_place_);
        group_tensor.Resize({static_cast<int64_t>(length)});
        phi::funcs::set_constant(*dev_ctx, &group_tensor, 0.0);
      }
666
    }
667 668 669 670 671 672
  } else {
    auto *autograd_meta = tensors_[var_index].get_autograd_meta();
    auto &grad_tensor = static_cast<egr::AutogradMeta *>(autograd_meta)->Grad();

    // process sparse group
    PADDLE_ENFORCE_EQ(
673 674
        HasGrad(var_index),
        true,
675 676 677 678 679 680 681
        platform::errors::PreconditionNotMet(
            "The sparse parameter[%d][%s] should have gradient. "
            "Currently, DataParallel does not support sparse "
            "parameters without generating gradients during training. "
            "For example, if is_sparese=True is used in Embedding, "
            "the current step of this parameter cannot generate gradient "
            "because of stop_gradient/detatch, where error will occur.",
682 683
            var_index,
            tensors_[var_index].name()));
684 685 686

    // need to check tensor type
    PADDLE_ENFORCE_EQ(
687 688
        grad_tensor.is_selected_rows(),
        true,
689 690 691 692 693 694 695 696 697
        platform::errors::PreconditionNotMet(
            "The sparse parameter[%d][%s] must have a selectedrows gradient. "
            "Before forward pass, the parameter type is inferred to be "
            "SelectedRows, but after backward pass, its actual type becomes "
            "LodTensor. It is currently not supported by DataParallel. "
            "For example, if sparse embedding is used, and the weight of "
            "embedding is shared with subsequent dense parameters, then "
            "the parameter gradient of the embedding will be converted "
            "to dense parameters.",
698 699
            var_index,
            tensors_[var_index].name()));
700 701

    group.sparse_contents_.set_impl(grad_tensor.impl());
702
  }
703 704 705 706 707

  if (--group.pending_ == 0) {
    // can start allreduce
    MarkGroupReady(group_index);
  }
708 709 710 711

  if (next_group_ == groups_.size()) {
    FinalizeBackward();
  }
712 713 714 715 716 717
}

void EagerReducer::MarkGroupReady(size_t group_index) {
  VLOG(3) << "Group[" << group_index << "] is ready";

  PADDLE_ENFORCE_GE(
718 719
      group_index,
      next_group_,
720 721 722 723
      platform::errors::PreconditionNotMet(
          "The index of the incoming group must be greater "
          "than or equal to the previously synchronized group index, "
          "expect it to greater than or equal to %d, but got %d.",
724 725
          next_group_,
          group_index));
726 727 728 729 730 731 732 733 734

  if (group_index > next_group_) {
    VLOG(3) << "It will adjust the order of group in next batch automatically";
    return;
  }

  for (; next_group_ < groups_.size() && groups_[next_group_].pending_ == 0;
       ++next_group_) {
    UNUSED auto &group = groups_[next_group_];
735 736 737 738 739
    if (group.is_sparse_) {
      AllReduceSparse(&group, next_group_);
    } else {
      FusedAllReduceSchedule(&group, next_group_);
    }
740 741 742
  }
}

743 744
bool EagerReducer::HasGrad(size_t var_index) {
  auto grad = egr::EagerUtils::mutable_grad(tensors_[var_index]);
745
  if (grad && grad->initialized()) {
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
    return true;
  } else {
    return false;
  }
}

void EagerReducer::ProcessUnusedDenseVars() {
  // The calculation stream must be used here to
  // avoid conflicts with communication.
  VLOG(3) << "Local used vars : "
          << string::join_strings(local_used_vars_, ',');

  const auto *dev_ctx =
      platform::DeviceContextPool::Instance().Get(inner_place_);
  auto *global_used_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(global_used_vars_.impl())
          .get();
763 764
  framework::TensorFromVector<int32_t>(
      local_used_vars_, *dev_ctx, global_used_tensor);
765 766 767 768

  distributed::AllreduceOptions opts;
  opts.reduce_op = ReduceOp::SUM;
  std::vector<Tensor> reduce_tensors = {global_used_vars_};
769 770 771 772 773
  std::vector<phi::DenseTensor> in_out;
  for (auto &t : reduce_tensors) {
    in_out.push_back(*std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
  }
  process_group_->AllReduce(in_out, in_out, opts)->Synchronize();
774

775 776
  framework::TensorToVector<int>(
      *global_used_tensor, *dev_ctx, &local_used_vars_);
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
  dev_ctx->Wait();

  // sync compute stream to get global used var message,
  // but maybe affect speed performance
  VLOG(3) << "Global used vars : "
          << string::join_strings(local_used_vars_, ',');

  for (const auto var_index : unused_vars_) {
    const bool global_unused = (local_used_vars_[var_index] == 0);

    // global used but local unused, set grad
    VLOG(3) << "[Rank " << process_group_->GetRank() << "]: "
            << "Var [" << var_index << "] [" << tensors_[var_index].name()
            << "] global_unused: " << global_unused
            << "  has grad: " << HasGrad(var_index);

    if (!global_unused) {
      VLOG(3) << "Set Tensor[" << var_index << "]'s Grad for [Rank "
              << process_group_->GetRank() << "]";
      const auto &var_locator = variable_locators_[var_index];
      const auto group_index = var_locator.group_index;
      const auto &group = groups_[group_index];
      const auto inside_group_index = var_locator.inside_group_index;
      auto &src_tensor = group.dense_tensors_[inside_group_index];

802 803 804 805 806
      // sparse no need to check and no support find_unused_parameters
      if (group.is_sparse_) {
        continue;
      }

807 808 809 810 811 812 813
      // NOTE(haohongxiang): Calling SetFakeEmpty here is to make sure that
      // gradient accumulation can continue normally after clear_gradients()
      // especiall in cases including complex control flow.
      std::static_pointer_cast<egr::GradNodeAccumulation>(
          GetGradNodeFromTensor(&tensors_[var_index]))
          ->SetFakeEmpty(false);

814 815 816 817 818 819 820 821 822 823 824 825 826 827
      Tensor grad_value(std::make_shared<phi::DenseTensor>(src_tensor));

      auto dest_var_base = tensors_[var_index];
      auto grad_tensor = egr::EagerUtils::mutable_grad(dest_var_base);
      grad_tensor->copy_(grad_value, inner_place_, true);
      grad_tensor->reshape(dest_var_base.shape());
    }
  }
}

void EagerReducer::FinalizeBackward() {
  groups_need_finalize_ = false;
  grad_need_hooks_ = false;
  for (auto &group : groups_) {
828 829 830
    if (!group.is_sparse_) {
      group.task->Synchronize();
    }
831 832 833
  }

  for (auto &group : groups_) {
834 835 836
    if (!group.is_sparse_) {
      group.SplitTensors(inner_place_);
    }
837 838 839 840 841 842 843 844 845 846 847 848
  }

  if (find_unused_vars_each_step_) {
    ProcessUnusedDenseVars();
    local_used_vars_.clear();
    local_used_vars_.resize(tensors_.size(), 0);
    VLOG(3) << "ProcessUnusedDenseVars is finished.";
  }

  VLOG(3) << "In the batch, Reducer is finished.";
}

849 850 851 852 853 854 855 856 857 858 859 860
void EagerReducer::FusedAllReduceSchedule(EagerGroup *group,
                                          const int curr_group_index) {
  // The overall timeline: concat > div_nranks > allreduce > split
  distributed::AllreduceOptions opts;
  opts.reduce_op = ReduceOp::SUM;

  VLOG(3) << "group [" << curr_group_index << "] start fused_allreduce.";

  // concat tensors
  group->ConcatTensors(inner_place_);

  // div nranks
861 862
  paddle::experimental::scale_(
      group->dense_contents_, 1.0 / nranks_, 0.0, false);
863 864 865

  // all_reduce
  std::vector<Tensor> reduce_tensors = {group->dense_contents_};
866 867 868 869 870
  std::vector<phi::DenseTensor> in_out;
  for (auto &t : reduce_tensors) {
    in_out.push_back(*std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
  }
  group->task = process_group_->AllReduce(in_out, in_out, opts);
871

872
  // split in FinalizeBackward()
873 874
}

875 876 877 878 879 880 881 882 883 884 885
void EagerReducer::AllReduceSparse(EagerGroup *group,
                                   const int curr_group_index) {
  // div nranks
  Tensor sparse_tensor(group->sparse_contents_);
  paddle::experimental::scale_(sparse_tensor, 1.0 / nranks_, 0.0, false);

  VLOG(3) << "sparse_group [" << curr_group_index << "] start allreduce.";

  auto *dev_ctx = platform::DeviceContextPool::Instance().Get(inner_place_);
  if (platform::is_gpu_place(inner_place_)) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
L
Leo Chen 已提交
886
    dev_ctx = static_cast<phi::GPUContext *>(
887 888 889 890 891 892 893
        platform::DeviceContextPool::Instance().Get(inner_place_));
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't concat grad tensors since it's not compiled with NCCL,"
        "Please recompile or reinstall Paddle with NCCL support."));
#endif
  } else if (platform::is_cpu_place(inner_place_)) {
L
Leo Chen 已提交
894
    dev_ctx = static_cast<phi::CPUContext *>(
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
        platform::DeviceContextPool::Instance().Get(inner_place_));
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Split grad tensor not supported on place (%s)", inner_place_));
  }

  auto src = std::dynamic_pointer_cast<phi::SelectedRows>(
      group->sparse_contents_.impl());
  const auto &src_rows = src->rows();

  const auto &rank_ = process_group_->GetRank();
  const auto &size_ = process_group_->GetSize();

  framework::Vector<int64_t> rows_num_vector(size_);
  rows_num_vector[rank_] = static_cast<int64_t>(src_rows.size());

  Tensor rows_num_tensor = paddle::experimental::empty(
      IntArray({static_cast<int64_t>(size_)}), DataType::INT64, inner_place_);
  auto *rows_num_dense_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(rows_num_tensor.impl()).get();
915 916
  framework::TensorFromVector<int64_t>(
      rows_num_vector, *dev_ctx, rows_num_dense_tensor);
917 918 919 920

  distributed::AllreduceOptions opts;
  opts.reduce_op = ReduceOp::SUM;
  std::vector<Tensor> reduce_tensors = {rows_num_tensor};
921 922 923 924 925
  std::vector<phi::DenseTensor> in_out;
  for (auto &t : reduce_tensors) {
    in_out.push_back(*std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
  }
  process_group_->AllReduce(in_out, in_out, opts)->Synchronize();
926

927 928
  framework::TensorToVector<int64_t>(
      *rows_num_dense_tensor, *dev_ctx, &rows_num_vector);
929 930 931
  dev_ctx->Wait();

  const auto *cpu_rows_num_ptr = rows_num_vector.data();
932 933
  auto rows_num = std::accumulate(
      cpu_rows_num_ptr, cpu_rows_num_ptr + size_, static_cast<int64_t>(0));
934 935 936 937 938 939 940

  VLOG(3) << "Gather rows: " << string::join_strings(rows_num_vector, ',')
          << ", total rows number: " << rows_num
          << ", height: " << src->height();

  dev_ctx->Wait();

941 942 943
  Tensor src_value_tensor(std::make_shared<phi::DenseTensor>(src->value()));
  std::vector<int64_t> dst_shape = src_value_tensor.shape();

944 945 946
  if (std::all_of(cpu_rows_num_ptr, cpu_rows_num_ptr + size_, [&](int64_t row) {
        return row == cpu_rows_num_ptr[0];
      })) {
947 948 949 950 951 952 953
    // During sparse communication, the number of each card is same.
    // allgather is used to speed up the allreduce by replacing broadcast.

    VLOG(3) << "allgather replaces broadcast to speed up in sparse allreduce";

    Tensor dst_rows_tensor =
        paddle::experimental::empty(IntArray({static_cast<int64_t>(rows_num)}),
954 955
                                    DataType::INT64,
                                    inner_place_);
956
    Tensor src_rows_tensor = paddle::experimental::empty(
957 958
        IntArray({static_cast<int64_t>((*src).rows().size())}),
        DataType::INT64,
959 960 961 962
        inner_place_);
    auto *src_rows_dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(src_rows_tensor.impl())
            .get();
963 964
    framework::TensorFromVector<int64_t>(
        (*src).rows(), *dev_ctx, src_rows_dense_tensor);
965 966 967

    std::vector<Tensor> src_rows_tensors = {src_rows_tensor};
    std::vector<Tensor> dst_rows_tensors = {dst_rows_tensor};
968 969 970 971 972 973 974 975 976
    std::vector<phi::DenseTensor> in;
    std::vector<phi::DenseTensor> out;
    for (auto &t : src_rows_tensors) {
      in.push_back(*std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
    }
    for (auto &t : dst_rows_tensors) {
      out.push_back(*std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
    }
    process_group_->AllGather(in, out)->Synchronize();
977 978 979 980 981

    framework::Vector<int64_t> dst_rows_vector(rows_num, 0);
    auto *dst_rows_dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(dst_rows_tensor.impl())
            .get();
982 983
    framework::TensorToVector<int64_t>(
        *dst_rows_dense_tensor, *dev_ctx, &dst_rows_vector);
984 985 986 987
    dev_ctx->Wait();

    dst_shape[dst_shape.size() - 2] = rows_num;
    auto dst_dense_tensor = std::dynamic_pointer_cast<phi::DenseTensor>(
988 989
        paddle::experimental::full(
            IntArray(dst_shape), 0, src_value_tensor.dtype(), inner_place_)
990 991 992 993 994 995 996 997 998
            .impl());

    auto dst =
        std::make_shared<phi::SelectedRows>(dst_rows_vector, (*src).height());
    *(dst->mutable_value()) = *dst_dense_tensor;
    Tensor dst_value_tensor(std::make_shared<phi::DenseTensor>(dst->value()));

    std::vector<Tensor> src_value_tensors = {src_value_tensor};
    std::vector<Tensor> dst_value_tensors = {dst_value_tensor};
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
    std::vector<phi::DenseTensor> src_dense;
    std::vector<phi::DenseTensor> dst_dense;
    for (auto &t : src_value_tensors) {
      src_dense.push_back(
          *std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
    }
    for (auto &t : dst_value_tensors) {
      dst_dense.push_back(
          *std::dynamic_pointer_cast<phi::DenseTensor>(t.impl()));
    }
    process_group_->AllGather(src_dense, dst_dense)->Synchronize();
1010 1011 1012 1013 1014

    src->set_rows(dst_rows_vector);
    *(src->mutable_value()) =
        *(std::dynamic_pointer_cast<phi::DenseTensor>(dst_value_tensor.impl()));
  } else {
1015 1016 1017 1018 1019 1020 1021
    std::vector<Tensor> rows_tensors;
    std::vector<Tensor> values_tensors;

    for (int i = 0; i < size_; ++i) {
      std::vector<int64_t> value_tensor_shape = {
          cpu_rows_num_ptr[i], dst_shape[dst_shape.size() - 1]};
      Tensor rows_tensor = paddle::experimental::full(
1022 1023 1024 1025
          IntArray({static_cast<int64_t>(cpu_rows_num_ptr[i])}),
          0,
          DataType::INT64,
          inner_place_);
1026 1027 1028 1029 1030 1031 1032 1033 1034
      Tensor values_tensor = paddle::experimental::full(
          IntArray(value_tensor_shape), 0, src->value().dtype(), inner_place_);
      std::vector<phi::DenseTensor> rows_dense_vector;
      std::vector<phi::DenseTensor> values_dense_vector;

      if (i == rank_) {
        auto *rows_dense_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(rows_tensor.impl())
                .get();
1035 1036
        framework::TensorFromVector<int64_t>(
            src_rows, *dev_ctx, rows_dense_tensor);
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
        values_tensor.set_impl(
            std::make_shared<phi::DenseTensor>(src->value()));
      }
      rows_dense_vector.push_back(
          *std::dynamic_pointer_cast<phi::DenseTensor>(rows_tensor.impl()));
      values_dense_vector.push_back(
          *std::dynamic_pointer_cast<phi::DenseTensor>(values_tensor.impl()));

      auto b_opts = BroadcastOptions();
      b_opts.source_rank = i;
      process_group_->Broadcast(rows_dense_vector, rows_dense_vector, b_opts);
      process_group_
          ->Broadcast(values_dense_vector, values_dense_vector, b_opts)
          ->Wait();
      rows_tensors.push_back(rows_tensor);
      values_tensors.push_back(values_tensor);
    }

    Tensor dst_rows_tensor =
        paddle::experimental::concat(rows_tensors, phi::Scalar(0));
    framework::Vector<int64_t> dst_rows_vector(rows_num, 0);
    auto *dst_rows_dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(dst_rows_tensor.impl())
            .get();
1061 1062
    framework::TensorToVector<int64_t>(
        *dst_rows_dense_tensor, *dev_ctx, &dst_rows_vector);
1063 1064 1065 1066 1067 1068
    src->set_rows(dst_rows_vector);

    Tensor dst_values_tensor =
        paddle::experimental::concat(values_tensors, phi::Scalar(0));
    *(src->mutable_value()) = *(
        std::dynamic_pointer_cast<phi::DenseTensor>(dst_values_tensor.impl()));
1069 1070 1071
  }
}

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
std::ostream &operator<<(std::ostream &out, const EagerGroup &group) {
  const auto &tensors_ = group.tensor_indices_;
  out << "numel: " << group.all_length_ << " ;var number: " << tensors_.size()
      << "\n";
  auto begin = tensors_.begin();
  auto end = tensors_.end();
  out << "[";
  for (int i = 0; begin != end && i < 100; ++i, ++begin) {
    if (i > 0) out << ' ';
    out << *begin;
  }
  if (begin != end) {
    out << " ...";
  }
  out << "]\n";
  return out;
}

1090 1091
}  //  namespace distributed
}  //  namespace paddle