pool_op_mlu.cc 15.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

F
From00 已提交
15
#include "paddle/fluid/framework/op_registry.h"
16
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
F
From00 已提交
17
#include "paddle/phi/kernels/funcs/pooling.h"
18 19 20 21 22 23 24

namespace paddle {
namespace operators {

namespace {

cnnlPoolingMode_t ToCnnlPoolingMode(const std::string &pooling_type,
25 26
                                    bool exclusive,
                                    bool adaptive) {
27 28 29 30
  cnnlPoolingMode_t pooling_mode;
  if (pooling_type == "max") {
    pooling_mode = CNNL_POOLING_MAX;
  } else if (pooling_type == "avg") {
31
    if (exclusive && !adaptive) {
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
      pooling_mode = CNNL_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
    } else {
      pooling_mode = CNNL_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument("Unknown pooling_type: %s",
                                                   pooling_type));
  }
  return pooling_mode;
}
}  // namespace

template <typename T>
class MLUPoolOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto &dev_ctx = ctx.template device_context<platform::MLUDeviceContext>();
    const Tensor *in_x = ctx.Input<Tensor>("X");
    Tensor *out = ctx.Output<Tensor>("Out");
    out->mutable_data<T>(ctx.GetPlace());

    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::string data_format = ctx.Attr<std::string>("data_format");

    bool global_pooling = ctx.Attr<bool>("global_pooling");
    bool ceil_mode = ctx.Attr<bool>("ceil_mode");
    bool exclusive = ctx.Attr<bool>("exclusive");
    bool adaptive = ctx.Attr<bool>("adaptive");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");

65 66
    PADDLE_ENFORCE_EQ(in_x->dims().size(),
                      4,
67 68 69
                      platform::errors::InvalidArgument(
                          "Only support 4-dims for mlu pool2d kernel."));

70
    const bool channel_last = data_format == "NHWC";
71 72 73 74 75 76
    // default
    cnnlTensorLayout_t cnnl_layout = CNNL_LAYOUT_NCHW;
    auto out_dims = out->dims();
    int64_t out_h = out_dims[2];
    int64_t out_w = out_dims[3];
    auto in_x_dims = in_x->dims();
77
    framework::DDim data_dims = phi::slice_ddim(in_x_dims, 2, in_x_dims.size());
78 79 80 81 82

    if (channel_last) {
      cnnl_layout = CNNL_LAYOUT_NHWC;
      out_h = out_dims[1];
      out_w = out_dims[2];
83
      data_dims = phi::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
84 85
    }

86 87 88 89 90 91 92
    phi::funcs::UpdatePadding(&paddings,
                              global_pooling,
                              adaptive,
                              padding_algorithm,
                              data_dims,
                              strides,
                              ksize);
93
    if (global_pooling) {
F
From00 已提交
94
      phi::funcs::UpdateKernelSize(&ksize, data_dims);
95 96 97 98 99
    }

    MLUCnnlTensorDesc in_x_desc(*in_x, cnnl_layout, ToCnnlDataType<T>());
    MLUCnnlTensorDesc out_desc(*out, cnnl_layout, ToCnnlDataType<T>());

100 101 102
    cnnlPoolingMode_t pool_mode =
        ToCnnlPoolingMode(pooling_type, exclusive, adaptive);

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    // transpose NCHW to NHWC since cnnl pool2d has worse performance in that
    // layout.
    framework::Tensor trans_in_x;
    framework::Tensor trans_out;
    if (channel_last) {
      trans_in_x = *in_x;
      trans_out = *out;
    } else {
      std::vector<int> perm{0, 2, 3, 1};
      TransposeFromMLUTensor<T>(
          ctx, perm, in_x, &trans_in_x, true /*need_reshape_or_alloc*/);
      trans_out = ctx.AllocateTmpTensor<T, MLUDeviceContext>(
          {out_dims[0], out_dims[2], out_dims[3], out_dims[1]}, dev_ctx);
    }
    MLUCnnlTensorDesc trans_in_x_desc(
        trans_in_x, CNNL_LAYOUT_NHWC, ToCnnlDataType<T>());
    MLUCnnlTensorDesc trans_out_desc(
        trans_out, CNNL_LAYOUT_NHWC, ToCnnlDataType<T>());

122
    if (!adaptive) {
123 124 125 126 127 128 129 130 131 132 133 134 135
      MLUCnnlPoolingDesc pool_desc(pool_mode,
                                   CNNL_NOT_PROPAGATE_NAN,
                                   ksize[0],
                                   ksize[1],
                                   paddings[0],
                                   paddings[1],
                                   paddings[2],
                                   paddings[3],
                                   strides[0],
                                   strides[1],
                                   1 /*row_dilation*/,
                                   1 /*col_dilation*/,
                                   ceil_mode);
136 137 138 139

      size_t extra_input_size = 0;
      cnnlHandle_t handle =
          ctx.template device_context<MLUDeviceContext>().cnnl_handle();
140 141
      cnnlGetPoolingExtraInputSize(
          handle, pool_mode, out_w, out_h, &extra_input_size);
142

143
      if (extra_input_size > 0) {
144 145 146
        framework::Tensor extra_host_tensor;
        extra_host_tensor.mutable_data<int8_t>(
            {static_cast<int64_t>(extra_input_size)}, platform::CPUPlace());
147 148
        cnnlInitPoolingExtraInput(handle,
                                  pool_desc.get(),
149 150
                                  trans_in_x_desc.get(),
                                  trans_out_desc.get(),
151 152 153 154
                                  GetBasePtr(&extra_host_tensor));
        framework::Tensor extra_device_tensor =
            ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
                {static_cast<int64_t>(extra_input_size)}, dev_ctx);
155 156
        framework::TensorCopy(
            extra_host_tensor, ctx.GetPlace(), &extra_device_tensor);
157 158 159 160 161 162 163 164
        // Increase extra_host_tensor holder_ reference count until copy
        // complete.
        auto increase_ref_count = [extra_host_tensor]() {
          VLOG(4) << "Finished copying extra_host_tensor["
                  << GetBasePtr(&extra_host_tensor)
                  << "] in mlu pooling kernel.";
        };
        dev_ctx.AddStreamCallback(increase_ref_count);
165
        MLUCnnl::PoolingForward(
166 167 168 169 170 171
            ctx,
            pool_mode,
            out_h,
            out_w,
            pool_desc.get(),
            nullptr /*alpha*/,
172 173
            trans_in_x_desc.get(),
            GetBasePtr(&trans_in_x),
174
            nullptr /*beta*/,
175
            GetBasePtr(&extra_device_tensor) /*params_shape_ptr*/,
176 177
            trans_out_desc.get(),
            GetBasePtr(&trans_out));
178
      } else {
179 180 181 182 183 184
        MLUCnnl::PoolingForward(ctx,
                                pool_mode,
                                out_h,
                                out_w,
                                pool_desc.get(),
                                nullptr /*alpha*/,
185 186
                                trans_in_x_desc.get(),
                                GetBasePtr(&trans_in_x),
187 188
                                nullptr /*beta*/,
                                nullptr /*params_shape_ptr*/,
189 190
                                trans_out_desc.get(),
                                GetBasePtr(&trans_out));
191
      }
192
    } else {
193 194 195 196 197 198 199 200
      MLUCnnl::AdaptivePoolingForward(ctx,
                                      pool_mode,
                                      trans_in_x_desc.get(),
                                      GetBasePtr(&trans_in_x),
                                      trans_out_desc.get(),
                                      GetBasePtr(&trans_out),
                                      nullptr,
                                      nullptr);
201 202 203 204 205
    }
    if (!channel_last) {
      std::vector<int> perm{0, 3, 1, 2};
      TransposeFromMLUTensor<T>(
          ctx, perm, &trans_out, out, false /*need_reshape_or_alloc*/);
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    }
  }
};

template <typename T, typename IDX_T>
class MLUPoolGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto &dev_ctx = ctx.template device_context<platform::MLUDeviceContext>();
    const Tensor *in_x = ctx.Input<Tensor>("X");
    const Tensor *out = ctx.Input<Tensor>("Out");
    const Tensor *out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor *in_x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    in_x_grad->mutable_data<T>(ctx.GetPlace());

    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    bool ceil_mode = ctx.Attr<bool>("ceil_mode");
    bool exclusive = ctx.Attr<bool>("exclusive");
    bool adaptive = ctx.Attr<bool>("adaptive");
    std::string data_format = ctx.Attr<std::string>("data_format");
    bool global_pooling = ctx.Attr<bool>("global_pooling");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");

    const bool channel_last = data_format == "NHWC";

    auto in_x_dims = in_x->dims();
235
    framework::DDim data_dims = phi::slice_ddim(in_x_dims, 2, in_x_dims.size());
236
    if (channel_last) {
237
      data_dims = phi::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
238 239
    }

240 241 242 243 244 245 246
    phi::funcs::UpdatePadding(&paddings,
                              global_pooling,
                              adaptive,
                              padding_algorithm,
                              data_dims,
                              strides,
                              ksize);
247
    if (global_pooling) {
F
From00 已提交
248
      phi::funcs::UpdateKernelSize(&ksize, data_dims);
249 250 251 252 253 254 255 256 257 258 259 260 261 262
    }

    // inputs need with NHWC layout
    framework::Tensor trans_in_x;
    framework::Tensor trans_out;
    framework::Tensor trans_out_grad;
    framework::Tensor trans_in_x_grad;
    if (channel_last) {
      trans_in_x = *in_x;
      trans_out = *out;
      trans_out_grad = *out_grad;
      trans_in_x_grad = *in_x_grad;
    } else {
      std::vector<int> perm{0, 2, 3, 1};
263 264 265 266 267 268
      TransposeFromMLUTensor<T>(
          ctx, perm, in_x, &trans_in_x, true /*need_reshape_or_alloc*/);
      TransposeFromMLUTensor<T>(
          ctx, perm, out, &trans_out, true /*need_reshape_or_alloc*/);
      TransposeFromMLUTensor<T>(
          ctx, perm, out_grad, &trans_out_grad, true /*need_reshape_or_alloc*/);
269
      auto in_x_grad_dims = in_x_grad->dims();
270 271 272 273 274 275
      trans_in_x_grad =
          ctx.AllocateTmpTensor<T, MLUDeviceContext>({in_x_grad_dims[0],
                                                      in_x_grad_dims[2],
                                                      in_x_grad_dims[3],
                                                      in_x_grad_dims[1]},
                                                     dev_ctx);
276
    }
277 278 279 280 281 282 283 284
    MLUCnnlTensorDesc trans_in_x_desc(
        trans_in_x, CNNL_LAYOUT_NHWC, ToCnnlDataType<T>());
    MLUCnnlTensorDesc trans_out_desc(
        trans_out, CNNL_LAYOUT_NHWC, ToCnnlDataType<T>());
    MLUCnnlTensorDesc trans_out_grad_desc(
        trans_out_grad, CNNL_LAYOUT_NHWC, ToCnnlDataType<T>());
    MLUCnnlTensorDesc trans_in_x_grad_desc(
        trans_in_x_grad, CNNL_LAYOUT_NHWC, ToCnnlDataType<T>());
285

286 287
    cnnlPoolingMode_t pool_mode =
        ToCnnlPoolingMode(pooling_type, exclusive, adaptive);
288 289 290 291 292 293 294 295 296 297 298 299 300
    MLUCnnlPoolingDesc pool_desc(pool_mode,
                                 CNNL_NOT_PROPAGATE_NAN,
                                 ksize[0],
                                 ksize[1],
                                 paddings[0],
                                 paddings[1],
                                 paddings[2],
                                 paddings[3],
                                 strides[0],
                                 strides[1],
                                 1 /*row_dilation*/,
                                 1 /*col_dilation*/,
                                 ceil_mode);
301 302 303 304 305

    if (pooling_type == "max") {
      framework::Tensor index_tensor =
          ctx.AllocateTmpTensor<IDX_T, MLUDeviceContext>(trans_out_grad.dims(),
                                                         dev_ctx);
306 307 308 309 310 311 312
      MLUCnnlTensorDesc index_tensor_desc(
          index_tensor, CNNL_LAYOUT_NHWC, ToCnnlDataType<IDX_T>());
      MLUCnnl::PoolingIndex(ctx,
                            pool_desc.get(),
                            trans_in_x_desc.get(),
                            GetBasePtr(&trans_in_x),
                            index_tensor_desc.get(),
313
                            GetBasePtr(&index_tensor));
314
      if (adaptive) {
315 316 317 318 319 320 321 322
        MLUCnnl::AdaptivePoolingBackward(ctx,
                                         pool_mode,
                                         trans_out_grad_desc.get(),
                                         GetBasePtr(&trans_out_grad),
                                         index_tensor_desc.get(),
                                         GetBasePtr(&index_tensor),
                                         trans_in_x_grad_desc.get(),
                                         GetBasePtr(&trans_in_x_grad));
323
      } else {
324 325 326 327 328 329 330 331 332 333 334 335
        MLUCnnl::PoolingBackward(ctx,
                                 pool_desc.get(),
                                 nullptr /*alpha*/,
                                 index_tensor_desc.get(),
                                 GetBasePtr(&index_tensor),
                                 trans_out_grad_desc.get(),
                                 GetBasePtr(&trans_out_grad),
                                 trans_in_x_desc.get(),
                                 GetBasePtr(&trans_in_x),
                                 nullptr /*beta*/,
                                 trans_in_x_grad_desc.get(),
                                 GetBasePtr(&trans_in_x_grad));
336
      }
337
    } else {
338
      if (adaptive) {
339 340 341 342 343 344 345 346
        MLUCnnl::AdaptivePoolingBackward(ctx,
                                         pool_mode,
                                         trans_out_grad_desc.get(),
                                         GetBasePtr(&trans_out_grad),
                                         nullptr /*index_tensor_desc.get()*/,
                                         nullptr /*GetBasePtr(&index_tensor)*/,
                                         trans_in_x_grad_desc.get(),
                                         GetBasePtr(&trans_in_x_grad));
347
      } else {
348 349 350 351 352 353 354 355 356 357 358
        MLUCnnl::PoolingBackward(ctx,
                                 pool_desc.get(),
                                 nullptr /*alpha*/,
                                 nullptr,
                                 nullptr,
                                 trans_out_grad_desc.get(),
                                 GetBasePtr(&trans_out_grad),
                                 nullptr,
                                 nullptr,
                                 nullptr /*beta*/,
                                 trans_in_x_grad_desc.get(),
359 360
                                 GetBasePtr(&trans_in_x_grad));
      }
361 362 363
    }
    if (!channel_last) {
      std::vector<int> perm{0, 3, 1, 2};
364 365 366 367
      TransposeFromMLUTensor<T>(ctx,
                                perm,
                                &trans_in_x_grad,
                                in_x_grad,
368 369 370 371 372 373 374 375 376
                                false /*need_reshape_or_alloc*/);
    }
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
377 378
REGISTER_OP_MLU_KERNEL(pool2d,
                       ops::MLUPoolOpKernel<float>,
379
                       ops::MLUPoolOpKernel<plat::float16>);
380 381
REGISTER_OP_MLU_KERNEL(pool2d_grad,
                       ops::MLUPoolGradOpKernel<float, int>,
382
                       ops::MLUPoolGradOpKernel<plat::float16, int16_t>);