pool_op_mlu.cc 12.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/pool_op.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"

namespace paddle {
namespace operators {

namespace {

cnnlPoolingMode_t ToCnnlPoolingMode(const std::string &pooling_type,
24
                                    bool exclusive, bool adaptive) {
25 26 27 28
  cnnlPoolingMode_t pooling_mode;
  if (pooling_type == "max") {
    pooling_mode = CNNL_POOLING_MAX;
  } else if (pooling_type == "avg") {
29
    if (exclusive && !adaptive) {
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
      pooling_mode = CNNL_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
    } else {
      pooling_mode = CNNL_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument("Unknown pooling_type: %s",
                                                   pooling_type));
  }
  return pooling_mode;
}
}  // namespace

template <typename T>
class MLUPoolOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto &dev_ctx = ctx.template device_context<platform::MLUDeviceContext>();
    const Tensor *in_x = ctx.Input<Tensor>("X");
    Tensor *out = ctx.Output<Tensor>("Out");
    out->mutable_data<T>(ctx.GetPlace());

    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::string data_format = ctx.Attr<std::string>("data_format");

    bool global_pooling = ctx.Attr<bool>("global_pooling");
    bool ceil_mode = ctx.Attr<bool>("ceil_mode");
    bool exclusive = ctx.Attr<bool>("exclusive");
    bool adaptive = ctx.Attr<bool>("adaptive");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");

    PADDLE_ENFORCE_EQ(in_x->dims().size(), 4,
                      platform::errors::InvalidArgument(
                          "Only support 4-dims for mlu pool2d kernel."));

67
    const bool channel_last = data_format == "NHWC";
68 69 70 71 72 73 74
    // default
    cnnlTensorLayout_t cnnl_layout = CNNL_LAYOUT_NCHW;
    auto out_dims = out->dims();
    int64_t out_h = out_dims[2];
    int64_t out_w = out_dims[3];
    auto in_x_dims = in_x->dims();
    framework::DDim data_dims =
75
        pten::slice_ddim(in_x_dims, 2, in_x_dims.size());
76 77 78 79 80

    if (channel_last) {
      cnnl_layout = CNNL_LAYOUT_NHWC;
      out_h = out_dims[1];
      out_w = out_dims[2];
81
      data_dims = pten::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
82 83 84 85 86 87 88 89 90 91 92
    }

    UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                  data_dims, strides, ksize);
    if (global_pooling) {
      UpdateKsize(&ksize, data_dims);
    }

    MLUCnnlTensorDesc in_x_desc(*in_x, cnnl_layout, ToCnnlDataType<T>());
    MLUCnnlTensorDesc out_desc(*out, cnnl_layout, ToCnnlDataType<T>());

93 94 95 96 97 98 99 100 101 102 103 104 105 106
    cnnlPoolingMode_t pool_mode =
        ToCnnlPoolingMode(pooling_type, exclusive, adaptive);

    if (!adaptive) {
      MLUCnnlPoolingDesc pool_desc(
          pool_mode, CNNL_NOT_PROPAGATE_NAN, ksize[0], ksize[1], paddings[0],
          paddings[1], paddings[2], paddings[3], strides[0], strides[1],
          1 /*row_dilation*/, 1 /*col_dilation*/, ceil_mode);

      size_t extra_input_size = 0;
      cnnlHandle_t handle =
          ctx.template device_context<MLUDeviceContext>().cnnl_handle();
      cnnlGetPoolingExtraInputSize(handle, pool_mode, out_w, out_h,
                                   &extra_input_size);
107

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
      if (extra_input_size > 0) {
        paddle::platform::CPUDeviceContext cpu_ctx;
        framework::Tensor extra_host_tensor =
            ctx.AllocateTmpTensor<int8_t, platform::CPUDeviceContext>(
                {static_cast<int64_t>(extra_input_size)}, cpu_ctx);
        cnnlInitPoolingExtraInput(handle, pool_desc.get(), in_x_desc.get(),
                                  out_desc.get(),
                                  GetBasePtr(&extra_host_tensor));
        framework::Tensor extra_device_tensor =
            ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
                {static_cast<int64_t>(extra_input_size)}, dev_ctx);
        // TODO(fwg): use Async copy, and add a callback to stream that free
        // host
        // memory.
        framework::TensorCopySync(extra_host_tensor, ctx.GetPlace(),
                                  &extra_device_tensor);
        MLUCnnl::PoolingForward(
            ctx, pool_mode, out_h, out_w, pool_desc.get(), nullptr /*alpha*/,
            in_x_desc.get(), GetBasePtr(in_x), nullptr /*beta*/,
            GetBasePtr(&extra_device_tensor) /*params_shape_ptr*/,
            out_desc.get(), GetBasePtr(out));
      } else {
        MLUCnnl::PoolingForward(
            ctx, pool_mode, out_h, out_w, pool_desc.get(), nullptr /*alpha*/,
            in_x_desc.get(), GetBasePtr(in_x), nullptr /*beta*/,
            nullptr /*params_shape_ptr*/, out_desc.get(), GetBasePtr(out));
      }
135
    } else {
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
      // cnnl Adaptive pooling only support NHWC layout
      framework::Tensor trans_in_x;
      framework::Tensor trans_out;
      if (channel_last) {
        trans_in_x = *in_x;
        trans_out = *out;
      } else {
        std::vector<int> perm{0, 2, 3, 1};
        TransposeFromMLUTensor<T>(ctx, perm, in_x, &trans_in_x,
                                  true /*need_reshape_or_alloc*/);
        trans_out = ctx.AllocateTmpTensor<T, MLUDeviceContext>(
            {out_dims[0], out_dims[2], out_dims[3], out_dims[1]}, dev_ctx);
      }
      MLUCnnlTensorDesc trans_in_x_desc(trans_in_x, CNNL_LAYOUT_NHWC,
                                        ToCnnlDataType<T>());
      MLUCnnlTensorDesc trans_out_desc(trans_out, CNNL_LAYOUT_NHWC,
                                       ToCnnlDataType<T>());
      MLUCnnl::AdaptivePoolingForward(
          ctx, pool_mode, trans_in_x_desc.get(), GetBasePtr(&trans_in_x),
          trans_out_desc.get(), GetBasePtr(&trans_out), nullptr, nullptr);
      if (!channel_last) {
        std::vector<int> perm{0, 3, 1, 2};
        TransposeFromMLUTensor<T>(ctx, perm, &trans_out, out,
                                  false /*need_reshape_or_alloc*/);
      }
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    }
  }
};

template <typename T, typename IDX_T>
class MLUPoolGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto &dev_ctx = ctx.template device_context<platform::MLUDeviceContext>();
    const Tensor *in_x = ctx.Input<Tensor>("X");
    const Tensor *out = ctx.Input<Tensor>("Out");
    const Tensor *out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor *in_x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    in_x_grad->mutable_data<T>(ctx.GetPlace());

    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    bool ceil_mode = ctx.Attr<bool>("ceil_mode");
    bool exclusive = ctx.Attr<bool>("exclusive");
    bool adaptive = ctx.Attr<bool>("adaptive");
    std::string data_format = ctx.Attr<std::string>("data_format");
    bool global_pooling = ctx.Attr<bool>("global_pooling");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");

    const bool channel_last = data_format == "NHWC";

    auto in_x_dims = in_x->dims();
    framework::DDim data_dims =
191
        pten::slice_ddim(in_x_dims, 2, in_x_dims.size());
192
    if (channel_last) {
193
      data_dims = pten::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    }

    UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                  data_dims, strides, ksize);
    if (global_pooling) {
      UpdateKsize(&ksize, data_dims);
    }

    // inputs need with NHWC layout
    framework::Tensor trans_in_x;
    framework::Tensor trans_out;
    framework::Tensor trans_out_grad;
    framework::Tensor trans_in_x_grad;
    if (channel_last) {
      trans_in_x = *in_x;
      trans_out = *out;
      trans_out_grad = *out_grad;
      trans_in_x_grad = *in_x_grad;
    } else {
      std::vector<int> perm{0, 2, 3, 1};
      TransposeFromMLUTensor<T>(ctx, perm, in_x, &trans_in_x,
                                true /*need_reshape_or_alloc*/);
      TransposeFromMLUTensor<T>(ctx, perm, out, &trans_out,
                                true /*need_reshape_or_alloc*/);
      TransposeFromMLUTensor<T>(ctx, perm, out_grad, &trans_out_grad,
                                true /*need_reshape_or_alloc*/);
      auto in_x_grad_dims = in_x_grad->dims();
      trans_in_x_grad = ctx.AllocateTmpTensor<T, MLUDeviceContext>(
          {in_x_grad_dims[0], in_x_grad_dims[2], in_x_grad_dims[3],
           in_x_grad_dims[1]},
          dev_ctx);
    }
    MLUCnnlTensorDesc trans_in_x_desc(trans_in_x, CNNL_LAYOUT_NHWC,
                                      ToCnnlDataType<T>());
    MLUCnnlTensorDesc trans_out_desc(trans_out, CNNL_LAYOUT_NHWC,
                                     ToCnnlDataType<T>());
    MLUCnnlTensorDesc trans_out_grad_desc(trans_out_grad, CNNL_LAYOUT_NHWC,
                                          ToCnnlDataType<T>());
    MLUCnnlTensorDesc trans_in_x_grad_desc(trans_in_x_grad, CNNL_LAYOUT_NHWC,
                                           ToCnnlDataType<T>());

235 236
    cnnlPoolingMode_t pool_mode =
        ToCnnlPoolingMode(pooling_type, exclusive, adaptive);
237 238 239 240 241 242 243 244 245 246 247 248 249 250
    MLUCnnlPoolingDesc pool_desc(
        pool_mode, CNNL_NOT_PROPAGATE_NAN, ksize[0], ksize[1], paddings[0],
        paddings[1], paddings[2], paddings[3], strides[0], strides[1],
        1 /*row_dilation*/, 1 /*col_dilation*/, ceil_mode);

    if (pooling_type == "max") {
      framework::Tensor index_tensor =
          ctx.AllocateTmpTensor<IDX_T, MLUDeviceContext>(trans_out_grad.dims(),
                                                         dev_ctx);
      MLUCnnlTensorDesc index_tensor_desc(index_tensor, CNNL_LAYOUT_NHWC,
                                          ToCnnlDataType<IDX_T>());
      MLUCnnl::PoolingIndex(ctx, pool_desc.get(), trans_in_x_desc.get(),
                            GetBasePtr(&trans_in_x), index_tensor_desc.get(),
                            GetBasePtr(&index_tensor));
251 252 253 254 255 256 257 258 259 260 261 262 263 264
      if (adaptive) {
        MLUCnnl::AdaptivePoolingBackward(
            ctx, pool_mode, trans_out_grad_desc.get(),
            GetBasePtr(&trans_out_grad), index_tensor_desc.get(),
            GetBasePtr(&index_tensor), trans_in_x_grad_desc.get(),
            GetBasePtr(&trans_in_x_grad));
      } else {
        MLUCnnl::PoolingBackward(
            ctx, pool_desc.get(), nullptr /*alpha*/, index_tensor_desc.get(),
            GetBasePtr(&index_tensor), trans_out_grad_desc.get(),
            GetBasePtr(&trans_out_grad), trans_in_x_desc.get(),
            GetBasePtr(&trans_in_x), nullptr /*beta*/,
            trans_in_x_grad_desc.get(), GetBasePtr(&trans_in_x_grad));
      }
265
    } else {
266 267 268 269 270 271 272 273 274 275 276 277 278
      if (adaptive) {
        MLUCnnl::AdaptivePoolingBackward(
            ctx, pool_mode, trans_out_grad_desc.get(),
            GetBasePtr(&trans_out_grad), nullptr /*index_tensor_desc.get()*/,
            nullptr /*GetBasePtr(&index_tensor)*/, trans_in_x_grad_desc.get(),
            GetBasePtr(&trans_in_x_grad));
      } else {
        MLUCnnl::PoolingBackward(ctx, pool_desc.get(), nullptr /*alpha*/,
                                 nullptr, nullptr, trans_out_grad_desc.get(),
                                 GetBasePtr(&trans_out_grad), nullptr, nullptr,
                                 nullptr /*beta*/, trans_in_x_grad_desc.get(),
                                 GetBasePtr(&trans_in_x_grad));
      }
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
    }
    if (!channel_last) {
      std::vector<int> perm{0, 3, 1, 2};
      TransposeFromMLUTensor<T>(ctx, perm, &trans_in_x_grad, in_x_grad,
                                false /*need_reshape_or_alloc*/);
    }
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_MLU_KERNEL(pool2d, ops::MLUPoolOpKernel<float>,
                       ops::MLUPoolOpKernel<plat::float16>);
REGISTER_OP_MLU_KERNEL(pool2d_grad, ops::MLUPoolGradOpKernel<float, int>,
                       ops::MLUPoolGradOpKernel<plat::float16, int16_t>);