test_run_program_op.py 16.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
import numpy as np
import six

20
import paddle
21
from paddle import _legacy_C_ops
22
import paddle.fluid as fluid
23
from paddle.fluid import core, framework
24
from paddle.fluid.layers.utils import _hash_with_id
0
0x45f 已提交
25
from paddle.fluid.framework import _in_eager_mode_
26 27
from paddle.fluid.executor import _is_enable_standalone_executor, _is_dy2st_enable_standalone_executor
from paddle.fluid.dygraph.base import switch_to_static_graph
28

29 30
paddle.enable_static()

31 32 33 34 35 36 37 38 39 40 41 42

@contextlib.contextmanager
def program_scope_guard():
    prog = fluid.Program()
    startup_prog = fluid.Program()
    scope = fluid.core.Scope()
    with fluid.scope_guard(scope):
        with fluid.program_guard(prog, startup_prog):
            with fluid.unique_name.guard():
                yield


43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
@switch_to_static_graph
def _add_build_strategy_for(input_program, start_op_index, end_op_index):
    compiled_program = paddle.static.CompiledProgram(
        core.Graph(input_program.desc, start_op_index, end_op_index),
        build_strategy=paddle.static.BuildStrategy())
    compiled_program._compile(core.Scope(),
                              paddle.framework._current_expected_place())
    ir_graph = paddle.fluid.framework.IrGraph(compiled_program._graph)
    builded_program = ir_graph.to_program()
    return builded_program


@switch_to_static_graph
def _build_program_by_desc(program_desc):
    prog = framework.Program()
    prog.desc = program_desc
    prog.blocks = [
        framework.Block(prog, i)
        for i in six.moves.range(prog.desc.num_blocks())
    ]
    prog._sync_with_cpp()
    return prog


67
# NOTE: Because RunProgramOp has a special output of type std::vector<Scope *>,
68 69 70 71 72 73 74
# the OpTest cannot be used in RunProgramOp. The variable type cannot be specified
# when creating output variables in OpTest, default type is LoDTensor
# NOTE: the gradient test method in OpTest also cannot be used for RunProgramOp,
# because it hold BlockDesc type attr, OperatorFactory can't parse this attr type
# when create Operator, so here compare gradients with static graph
# NOTE: Here rewrite a simple unittest framework for RunProgramOp
class RunProgramOpTest(unittest.TestCase):
75

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    def build_model(self):
        raise NotImplementedError(
            "RunProgramOp test should implement build_model")

    def check_output(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            # TODO: RunProgramOp is not recommended for use in static mode now
            self.expect_outs = self.run_static_model(place, is_test=True)
            self.check_output_with_place(place)

    def check_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            # TODO: RunProgramOp is not recommended for use in static mode now
            self.expect_grads = self.run_static_model(place, is_test=False)
            self.check_grad_with_place(place)

    def run_static_model(self, place, is_test=True):
        with program_scope_guard():
            startup_program = fluid.default_startup_program()
            main_program = fluid.default_main_program()

            self.build_model()

            exe = fluid.Executor(place)
            exe.run(startup_program)

            if is_test:
                fetch_list = self.output_names['Out']
            else:
                fetch_list = self.get_param_grad_names()

            outs = exe.run(main_program,
                           feed=self.inputs['X'],
                           fetch_list=fetch_list)
            return outs

    def get_program_desc(self):
        with program_scope_guard():
            fwd_op_num = self.build_model()
            return fluid.default_main_program().desc, fwd_op_num

123 124 125 126 127 128 129 130 131
    def get_forward_backward_program_desc(self, whole_program_desc,
                                          forward_op_num, output_num):
        program = _build_program_by_desc(whole_program_desc)
        forward_program = _add_build_strategy_for(program, 0, forward_op_num)
        backward_program = _add_build_strategy_for(
            program, forward_op_num + 2 * output_num,
            program.desc.block(0).op_size())
        return forward_program.desc, backward_program.desc

132
    def prepare_attrs(self):
133 134 135 136 137 138
        return [
            'global_block',
            self.program_desc.block(0), 'start_op_index', 0, 'end_op_index',
            self.fwd_op_num, 'program_id',
            _hash_with_id(self.program_desc, self)
        ]
139 140 141 142 143 144 145 146 147 148 149 150 151

    def get_param_grad_names(self):
        grad_names = []
        for var_name in self.inputs['Params']:
            grad_names.append(var_name + core.grad_var_suffix())
        return grad_names

    def check_output_with_place(self, place):
        # Step 1. run op
        actual_outs = self.calc_dygraph_output(place)

        # Step 2. compare output
        for expect_v, actual_v in six.moves.zip(self.expect_outs, actual_outs):
152 153 154 155
            np.testing.assert_allclose(expect_v,
                                       actual_v.numpy(),
                                       rtol=1e-05,
                                       atol=1e-05)
156 157 158 159 160 161 162 163 164

    def check_grad_with_place(self, place):
        # Step 1. calc grads
        actual_grads = self.calc_dygraph_grad(place)

        # Step 2. compare grads
        for expect_v, actual_v in six.moves.zip(self.expect_grads,
                                                actual_grads):
            np.testing.assert_array_almost_equal(expect_v, actual_v)
165 166 167 168
            np.testing.assert_allclose(expect_v,
                                       actual_v,
                                       rtol=1e-05,
                                       atol=1e-05)
169 170

    def prepare_dygraph_input(self, place, return_param_list=False):
171

172
        def create_var_base(is_input, name, np_value, stop_gradient):
0
0x45f 已提交
173
            if _in_eager_mode_:
174 175 176 177
                var = core.eager.Tensor(value=np_value,
                                        name=name,
                                        place=place,
                                        zero_copy=True)
0
0x45f 已提交
178
            else:
179 180 181 182
                var = core.VarBase(value=np_value,
                                   name=name,
                                   place=place,
                                   zero_copy=True)
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
            var.stop_gradient = stop_gradient
            return var

        # build inputs
        inputs = {}
        param_list = []
        inputs['X'] = []
        for name, np_value in self.inputs['X'].items():
            var = create_var_base(True, name, np_value, True)
            inputs['X'].append(var)
        inputs['Params'] = []
        for name, np_value in self.inputs['Params'].items():
            var = create_var_base(True, name, np_value, False)
            inputs['Params'].append(var)
            if return_param_list:
                param_list.append(var)

        if return_param_list:
            return inputs, param_list
        return inputs

    def prepare_dygraph_output(self):
205

206 207 208 209 210 211 212 213 214 215 216
        def create_var_base(is_input, name):
            var = framework._varbase_creator(dtype=None, shape=None, name=name)
            var.stop_gradient = False
            return var

        # build outputs
        outputs = {}
        outputs['Out'] = []
        for name in self.output_names['Out']:
            outputs['Out'].append(create_var_base(False, name))

0
0x45f 已提交
217 218 219 220 221 222 223 224 225
        if _in_eager_mode_:
            outputs['OutScope'] = [core.Scope()]
        else:
            outputs['OutScope'] = framework._varbase_creator(
                type=core.VarDesc.VarType.STEP_SCOPES,
                name="program_out_scope",
                persistable=True)
            inner_scope = core.Scope()
            outputs['OutScope'].value().set_scope(inner_scope)
226 227

        outputs['DOut'] = [create_var_base(False, "Fake_var")]
228 229 230
        return outputs

    def calc_dygraph_output(self, place):
231 232 233
        self.program_desc, self.fwd_op_num = self.get_program_desc()
        self.attrs = self.prepare_attrs()

234 235 236 237
        with fluid.dygraph.guard(place):
            inputs = self.prepare_dygraph_input(place)
            outputs = self.prepare_dygraph_output()

238 239 240 241 242 243 244 245 246 247 248
            forward_program_desc, backward_program_desc = self.get_forward_backward_program_desc(
                self.program_desc, self.fwd_op_num, len(outputs['Out']))

            use_interpretorcore = _is_enable_standalone_executor(
            ) and _is_dy2st_enable_standalone_executor()
            self.attrs.extend(('use_interpretorcore', use_interpretorcore))
            if use_interpretorcore:
                self.attrs.extend(
                    ('forward_global_block', forward_program_desc.block(0),
                     'backward_global_block', backward_program_desc.block(0)))

249 250 251
            _legacy_C_ops.run_program(inputs['X'], inputs['Params'],
                                      outputs['Out'], outputs['OutScope'],
                                      outputs['DOut'], None, *self.attrs)
252

253 254 255
            return outputs['Out']

    def calc_dygraph_grad(self, place):
256 257 258
        self.program_desc, self.fwd_op_num = self.get_program_desc()
        self.attrs = self.prepare_attrs()

259 260 261 262 263
        with fluid.dygraph.guard(place):
            # Step 1. run forward
            inputs, input_param_list = self.prepare_dygraph_input(place, True)
            outputs = self.prepare_dygraph_output()

264 265 266 267 268 269 270 271 272 273 274
            forward_program_desc, backward_program_desc = self.get_forward_backward_program_desc(
                self.program_desc, self.fwd_op_num, len(outputs['Out']))

            use_interpretorcore = _is_enable_standalone_executor(
            ) and _is_dy2st_enable_standalone_executor()
            self.attrs.extend(('use_interpretorcore', use_interpretorcore))
            if use_interpretorcore:
                self.attrs.extend(
                    ('forward_global_block', forward_program_desc.block(0),
                     'backward_global_block', backward_program_desc.block(0)))

275 276 277
            _legacy_C_ops.run_program(inputs['X'], inputs['Params'],
                                      outputs['Out'], outputs['OutScope'],
                                      outputs['DOut'], None, *self.attrs)
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

            for param in input_param_list:
                var_type = self._get_grad_vartype(param.name)
                if var_type is None:
                    continue
                param._set_grad_type(var_type)

            # Step 2. run backward
            # NOTE: in unittest, only support single output now
            actual_outs = outputs['Out']
            assert len(actual_outs) == 1
            actual_outs[0].backward()

            # Step 3. prepare grads
            grads = []
            for param in input_param_list:
                grad = param.gradient()
                grads.append(grad)
            return grads

    def _get_grad_vartype(self, name):
        assert self.program_desc is not None
        grad_name = name + core.grad_var_suffix()
        for i in six.moves.range(self.program_desc.num_blocks()):
            block = self.program_desc.block(i)
303
            var_desc = block.find_var_recursive(grad_name.encode())
304 305 306 307
            return var_desc.type() if var_desc is not None else None


class TestRunProgramOpWithFC(RunProgramOpTest):
308

309 310 311 312 313 314 315 316 317 318 319
    def setUp(self):
        self.op_type = "run_program"
        self.dtype = np.float32
        self.input_names = {
            'X': ['img'],
            'Params': ['weight_param', 'bias_param']
        }
        self.output_names = {'Out': ['fc_0.tmp_2']}

        self.inputs = {
            'X': {
320 321
                self.input_names['X'][0]:
                np.random.random((32, 1, 28, 28)).astype(self.dtype)
322 323
            },
            'Params': {
324 325 326 327
                self.input_names['Params'][0]:
                np.random.random((784, 10)).astype(self.dtype),
                self.input_names['Params'][1]:
                np.random.random((32, 10)).astype(self.dtype)
328 329 330 331 332 333 334 335 336 337 338
            }
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad()

    def build_model(self):
        # 1. simple model
339 340 341
        img = fluid.data(name=self.input_names['X'][0],
                         shape=[None, 1, 28, 28],
                         dtype='float32')
342 343 344
        weight_attr = fluid.ParamAttr(
            name=self.input_names['Params'][0],
            learning_rate=0.5,
345 346
            initializer=fluid.initializer.NumpyArrayInitializer(
                self.inputs['Params'][self.input_names['Params'][0]]),
347 348 349 350
            trainable=True)
        bias_attr = fluid.ParamAttr(
            name=self.input_names['Params'][1],
            learning_rate=0.5,
351 352
            initializer=fluid.initializer.NumpyArrayInitializer(
                self.inputs['Params'][self.input_names['Params'][1]]),
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
            trainable=True)
        pred = fluid.layers.fc(input=img,
                               size=10,
                               param_attr=weight_attr,
                               bias_attr=bias_attr,
                               act='relu')
        # 2. get forward op num
        fwd_op_num = fluid.default_main_program().global_block().desc.op_size()
        # 3. append backward
        grads = fluid.backward.gradients(targets=[pred], inputs=[img])

        return fwd_op_num


class TestRunProgramOpWithEmbedding(RunProgramOpTest):
368

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    def setUp(self):
        self.op_type = "run_program"
        self.dtype = np.float32
        self.input_names = {'X': ['x'], 'Params': ['emb_weight']}
        self.output_names = {'Out': ['reduce_sum_0.tmp_0']}

        self.inputs = {
            'X': {
                'x': np.array([[1, 3, 0, 4, 7]]).astype("int64")
            },
            'Params': {
                'emb_weight': np.random.random(size=(10, 16)).astype("float32")
            }
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
388
        # NOTE: fecth not support SelectedRows, catnot compare
389 390 391 392 393 394 395 396 397 398
        # sparse gradients with staic mode, only run dygraph
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            # TODO: RunProgramOp is not recommended for use in static mode now
            self.calc_dygraph_grad(place)

    def build_model(self):
        # 1. simple model
399 400 401
        x = fluid.layers.data(name=self.input_names['X'][0],
                              shape=[5],
                              dtype='int64')
402 403 404 405 406 407
        emb = fluid.input.embedding(
            input=x,
            size=[10, 16],
            param_attr=fluid.ParamAttr(
                name="emb_weight",
                learning_rate=10,
408 409
                initializer=fluid.initializer.NumpyArrayInitializer(
                    self.inputs['Params'][self.input_names['Params'][0]])),
410 411 412 413 414 415 416 417 418 419
            is_sparse=True)
        y = fluid.layers.reduce_sum(emb, dim=-1)
        # 2. get forward op num
        fwd_op_num = fluid.default_main_program().global_block().desc.op_size()
        # 3. append backward
        grads = fluid.backward.gradients(targets=[y], inputs=[x])

        return fwd_op_num


420
class Net(paddle.nn.Layer):
421

422 423 424 425 426 427 428 429 430 431 432 433 434
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = paddle.nn.Linear(10, 10)
        self.fc2 = paddle.nn.Linear(10, 1)

    def forward(self, x):
        out = self.fc1(x)
        out.stop_gradient = True
        out = self.fc2(out)
        return out


class TestParametersWithStopGradient(unittest.TestCase):
435

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
    def setUp(self):
        self.seed = 2021
        self.iter = 5

    def train(self, to_static):
        # prepare env
        paddle.seed(self.seed)

        net = Net()
        if to_static:
            net = paddle.jit.to_static(net)
        sgd = paddle.optimizer.SGD(0.01, parameters=net.parameters())

        for i in range(self.iter):
            x = paddle.rand([4, 10])
            out = net(x)
            loss = paddle.mean(out)

            loss.backward()
            sgd.minimize(loss)
            net.clear_gradients()

        return loss

    def test_stop_gradient(self):
        paddle.disable_static()

        dy_loss = self.train(to_static=False)
        st_loss = self.train(to_static=True)
        self.assertEqual(dy_loss[0], st_loss[0])

        paddle.enable_static()


470 471
if __name__ == "__main__":
    unittest.main()