test_run_program_op.py 16.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
import numpy as np
import six

20
import paddle
21
from paddle import _C_ops, _legacy_C_ops
22 23 24
import paddle.fluid as fluid
from paddle import compat as cpt
from paddle.fluid import core, framework, executor
25
from paddle.fluid.layers.utils import _hash_with_id
0
0x45f 已提交
26
from paddle.fluid.framework import _in_eager_mode_
27 28
from paddle.fluid.executor import _is_enable_standalone_executor, _is_dy2st_enable_standalone_executor
from paddle.fluid.dygraph.base import switch_to_static_graph
29

30 31
paddle.enable_static()

32 33 34 35 36 37 38 39 40 41 42 43

@contextlib.contextmanager
def program_scope_guard():
    prog = fluid.Program()
    startup_prog = fluid.Program()
    scope = fluid.core.Scope()
    with fluid.scope_guard(scope):
        with fluid.program_guard(prog, startup_prog):
            with fluid.unique_name.guard():
                yield


44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
@switch_to_static_graph
def _add_build_strategy_for(input_program, start_op_index, end_op_index):
    compiled_program = paddle.static.CompiledProgram(
        core.Graph(input_program.desc, start_op_index, end_op_index),
        build_strategy=paddle.static.BuildStrategy())
    compiled_program._compile(core.Scope(),
                              paddle.framework._current_expected_place())
    ir_graph = paddle.fluid.framework.IrGraph(compiled_program._graph)
    builded_program = ir_graph.to_program()
    return builded_program


@switch_to_static_graph
def _build_program_by_desc(program_desc):
    prog = framework.Program()
    prog.desc = program_desc
    prog.blocks = [
        framework.Block(prog, i)
        for i in six.moves.range(prog.desc.num_blocks())
    ]
    prog._sync_with_cpp()
    return prog


68
# NOTE: Because RunProgramOp has a special output of type std::vector<Scope *>,
69 70 71 72 73 74 75
# the OpTest cannot be used in RunProgramOp. The variable type cannot be specified
# when creating output variables in OpTest, default type is LoDTensor
# NOTE: the gradient test method in OpTest also cannot be used for RunProgramOp,
# because it hold BlockDesc type attr, OperatorFactory can't parse this attr type
# when create Operator, so here compare gradients with static graph
# NOTE: Here rewrite a simple unittest framework for RunProgramOp
class RunProgramOpTest(unittest.TestCase):
76

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    def build_model(self):
        raise NotImplementedError(
            "RunProgramOp test should implement build_model")

    def check_output(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            # TODO: RunProgramOp is not recommended for use in static mode now
            self.expect_outs = self.run_static_model(place, is_test=True)
            self.check_output_with_place(place)

    def check_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            # TODO: RunProgramOp is not recommended for use in static mode now
            self.expect_grads = self.run_static_model(place, is_test=False)
            self.check_grad_with_place(place)

    def run_static_model(self, place, is_test=True):
        with program_scope_guard():
            startup_program = fluid.default_startup_program()
            main_program = fluid.default_main_program()

            self.build_model()

            exe = fluid.Executor(place)
            exe.run(startup_program)

            if is_test:
                fetch_list = self.output_names['Out']
            else:
                fetch_list = self.get_param_grad_names()

            outs = exe.run(main_program,
                           feed=self.inputs['X'],
                           fetch_list=fetch_list)
            return outs

    def get_program_desc(self):
        with program_scope_guard():
            fwd_op_num = self.build_model()
            return fluid.default_main_program().desc, fwd_op_num

124 125 126 127 128 129 130 131 132
    def get_forward_backward_program_desc(self, whole_program_desc,
                                          forward_op_num, output_num):
        program = _build_program_by_desc(whole_program_desc)
        forward_program = _add_build_strategy_for(program, 0, forward_op_num)
        backward_program = _add_build_strategy_for(
            program, forward_op_num + 2 * output_num,
            program.desc.block(0).op_size())
        return forward_program.desc, backward_program.desc

133
    def prepare_attrs(self):
134 135 136 137 138 139
        return [
            'global_block',
            self.program_desc.block(0), 'start_op_index', 0, 'end_op_index',
            self.fwd_op_num, 'program_id',
            _hash_with_id(self.program_desc, self)
        ]
140 141 142 143 144 145 146 147 148 149 150 151 152

    def get_param_grad_names(self):
        grad_names = []
        for var_name in self.inputs['Params']:
            grad_names.append(var_name + core.grad_var_suffix())
        return grad_names

    def check_output_with_place(self, place):
        # Step 1. run op
        actual_outs = self.calc_dygraph_output(place)

        # Step 2. compare output
        for expect_v, actual_v in six.moves.zip(self.expect_outs, actual_outs):
153 154 155 156
            np.testing.assert_allclose(expect_v,
                                       actual_v.numpy(),
                                       rtol=1e-05,
                                       atol=1e-05)
157 158 159 160 161 162 163 164 165

    def check_grad_with_place(self, place):
        # Step 1. calc grads
        actual_grads = self.calc_dygraph_grad(place)

        # Step 2. compare grads
        for expect_v, actual_v in six.moves.zip(self.expect_grads,
                                                actual_grads):
            np.testing.assert_array_almost_equal(expect_v, actual_v)
166 167 168 169
            np.testing.assert_allclose(expect_v,
                                       actual_v,
                                       rtol=1e-05,
                                       atol=1e-05)
170 171

    def prepare_dygraph_input(self, place, return_param_list=False):
172

173
        def create_var_base(is_input, name, np_value, stop_gradient):
0
0x45f 已提交
174
            if _in_eager_mode_:
175 176 177 178
                var = core.eager.Tensor(value=np_value,
                                        name=name,
                                        place=place,
                                        zero_copy=True)
0
0x45f 已提交
179
            else:
180 181 182 183
                var = core.VarBase(value=np_value,
                                   name=name,
                                   place=place,
                                   zero_copy=True)
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
            var.stop_gradient = stop_gradient
            return var

        # build inputs
        inputs = {}
        param_list = []
        inputs['X'] = []
        for name, np_value in self.inputs['X'].items():
            var = create_var_base(True, name, np_value, True)
            inputs['X'].append(var)
        inputs['Params'] = []
        for name, np_value in self.inputs['Params'].items():
            var = create_var_base(True, name, np_value, False)
            inputs['Params'].append(var)
            if return_param_list:
                param_list.append(var)

        if return_param_list:
            return inputs, param_list
        return inputs

    def prepare_dygraph_output(self):
206

207 208 209 210 211 212 213 214 215 216 217
        def create_var_base(is_input, name):
            var = framework._varbase_creator(dtype=None, shape=None, name=name)
            var.stop_gradient = False
            return var

        # build outputs
        outputs = {}
        outputs['Out'] = []
        for name in self.output_names['Out']:
            outputs['Out'].append(create_var_base(False, name))

0
0x45f 已提交
218 219 220 221 222 223 224 225 226
        if _in_eager_mode_:
            outputs['OutScope'] = [core.Scope()]
        else:
            outputs['OutScope'] = framework._varbase_creator(
                type=core.VarDesc.VarType.STEP_SCOPES,
                name="program_out_scope",
                persistable=True)
            inner_scope = core.Scope()
            outputs['OutScope'].value().set_scope(inner_scope)
227 228

        outputs['DOut'] = [create_var_base(False, "Fake_var")]
229 230 231
        return outputs

    def calc_dygraph_output(self, place):
232 233 234
        self.program_desc, self.fwd_op_num = self.get_program_desc()
        self.attrs = self.prepare_attrs()

235 236 237 238
        with fluid.dygraph.guard(place):
            inputs = self.prepare_dygraph_input(place)
            outputs = self.prepare_dygraph_output()

239 240 241 242 243 244 245 246 247 248 249
            forward_program_desc, backward_program_desc = self.get_forward_backward_program_desc(
                self.program_desc, self.fwd_op_num, len(outputs['Out']))

            use_interpretorcore = _is_enable_standalone_executor(
            ) and _is_dy2st_enable_standalone_executor()
            self.attrs.extend(('use_interpretorcore', use_interpretorcore))
            if use_interpretorcore:
                self.attrs.extend(
                    ('forward_global_block', forward_program_desc.block(0),
                     'backward_global_block', backward_program_desc.block(0)))

250 251 252
            _legacy_C_ops.run_program(inputs['X'], inputs['Params'],
                                      outputs['Out'], outputs['OutScope'],
                                      outputs['DOut'], None, *self.attrs)
253

254 255 256
            return outputs['Out']

    def calc_dygraph_grad(self, place):
257 258 259
        self.program_desc, self.fwd_op_num = self.get_program_desc()
        self.attrs = self.prepare_attrs()

260 261 262 263 264
        with fluid.dygraph.guard(place):
            # Step 1. run forward
            inputs, input_param_list = self.prepare_dygraph_input(place, True)
            outputs = self.prepare_dygraph_output()

265 266 267 268 269 270 271 272 273 274 275
            forward_program_desc, backward_program_desc = self.get_forward_backward_program_desc(
                self.program_desc, self.fwd_op_num, len(outputs['Out']))

            use_interpretorcore = _is_enable_standalone_executor(
            ) and _is_dy2st_enable_standalone_executor()
            self.attrs.extend(('use_interpretorcore', use_interpretorcore))
            if use_interpretorcore:
                self.attrs.extend(
                    ('forward_global_block', forward_program_desc.block(0),
                     'backward_global_block', backward_program_desc.block(0)))

276 277 278
            _legacy_C_ops.run_program(inputs['X'], inputs['Params'],
                                      outputs['Out'], outputs['OutScope'],
                                      outputs['DOut'], None, *self.attrs)
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

            for param in input_param_list:
                var_type = self._get_grad_vartype(param.name)
                if var_type is None:
                    continue
                param._set_grad_type(var_type)

            # Step 2. run backward
            # NOTE: in unittest, only support single output now
            actual_outs = outputs['Out']
            assert len(actual_outs) == 1
            actual_outs[0].backward()

            # Step 3. prepare grads
            grads = []
            for param in input_param_list:
                grad = param.gradient()
                grads.append(grad)
            return grads

    def _get_grad_vartype(self, name):
        assert self.program_desc is not None
        grad_name = name + core.grad_var_suffix()
        for i in six.moves.range(self.program_desc.num_blocks()):
            block = self.program_desc.block(i)
            var_desc = block.find_var_recursive(cpt.to_bytes(grad_name))
            return var_desc.type() if var_desc is not None else None


class TestRunProgramOpWithFC(RunProgramOpTest):
309

310 311 312 313 314 315 316 317 318 319 320
    def setUp(self):
        self.op_type = "run_program"
        self.dtype = np.float32
        self.input_names = {
            'X': ['img'],
            'Params': ['weight_param', 'bias_param']
        }
        self.output_names = {'Out': ['fc_0.tmp_2']}

        self.inputs = {
            'X': {
321 322
                self.input_names['X'][0]:
                np.random.random((32, 1, 28, 28)).astype(self.dtype)
323 324
            },
            'Params': {
325 326 327 328
                self.input_names['Params'][0]:
                np.random.random((784, 10)).astype(self.dtype),
                self.input_names['Params'][1]:
                np.random.random((32, 10)).astype(self.dtype)
329 330 331 332 333 334 335 336 337 338 339
            }
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad()

    def build_model(self):
        # 1. simple model
340 341 342
        img = fluid.data(name=self.input_names['X'][0],
                         shape=[None, 1, 28, 28],
                         dtype='float32')
343 344 345
        weight_attr = fluid.ParamAttr(
            name=self.input_names['Params'][0],
            learning_rate=0.5,
346 347
            initializer=fluid.initializer.NumpyArrayInitializer(
                self.inputs['Params'][self.input_names['Params'][0]]),
348 349 350 351
            trainable=True)
        bias_attr = fluid.ParamAttr(
            name=self.input_names['Params'][1],
            learning_rate=0.5,
352 353
            initializer=fluid.initializer.NumpyArrayInitializer(
                self.inputs['Params'][self.input_names['Params'][1]]),
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
            trainable=True)
        pred = fluid.layers.fc(input=img,
                               size=10,
                               param_attr=weight_attr,
                               bias_attr=bias_attr,
                               act='relu')
        # 2. get forward op num
        fwd_op_num = fluid.default_main_program().global_block().desc.op_size()
        # 3. append backward
        grads = fluid.backward.gradients(targets=[pred], inputs=[img])

        return fwd_op_num


class TestRunProgramOpWithEmbedding(RunProgramOpTest):
369

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
    def setUp(self):
        self.op_type = "run_program"
        self.dtype = np.float32
        self.input_names = {'X': ['x'], 'Params': ['emb_weight']}
        self.output_names = {'Out': ['reduce_sum_0.tmp_0']}

        self.inputs = {
            'X': {
                'x': np.array([[1, 3, 0, 4, 7]]).astype("int64")
            },
            'Params': {
                'emb_weight': np.random.random(size=(10, 16)).astype("float32")
            }
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
389
        # NOTE: fecth not support SelectedRows, catnot compare
390 391 392 393 394 395 396 397 398 399
        # sparse gradients with staic mode, only run dygraph
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            # TODO: RunProgramOp is not recommended for use in static mode now
            self.calc_dygraph_grad(place)

    def build_model(self):
        # 1. simple model
400 401 402
        x = fluid.layers.data(name=self.input_names['X'][0],
                              shape=[5],
                              dtype='int64')
403 404 405 406 407 408
        emb = fluid.input.embedding(
            input=x,
            size=[10, 16],
            param_attr=fluid.ParamAttr(
                name="emb_weight",
                learning_rate=10,
409 410
                initializer=fluid.initializer.NumpyArrayInitializer(
                    self.inputs['Params'][self.input_names['Params'][0]])),
411 412 413 414 415 416 417 418 419 420
            is_sparse=True)
        y = fluid.layers.reduce_sum(emb, dim=-1)
        # 2. get forward op num
        fwd_op_num = fluid.default_main_program().global_block().desc.op_size()
        # 3. append backward
        grads = fluid.backward.gradients(targets=[y], inputs=[x])

        return fwd_op_num


421
class Net(paddle.nn.Layer):
422

423 424 425 426 427 428 429 430 431 432 433 434 435
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = paddle.nn.Linear(10, 10)
        self.fc2 = paddle.nn.Linear(10, 1)

    def forward(self, x):
        out = self.fc1(x)
        out.stop_gradient = True
        out = self.fc2(out)
        return out


class TestParametersWithStopGradient(unittest.TestCase):
436

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
    def setUp(self):
        self.seed = 2021
        self.iter = 5

    def train(self, to_static):
        # prepare env
        paddle.seed(self.seed)

        net = Net()
        if to_static:
            net = paddle.jit.to_static(net)
        sgd = paddle.optimizer.SGD(0.01, parameters=net.parameters())

        for i in range(self.iter):
            x = paddle.rand([4, 10])
            out = net(x)
            loss = paddle.mean(out)

            loss.backward()
            sgd.minimize(loss)
            net.clear_gradients()

        return loss

    def test_stop_gradient(self):
        paddle.disable_static()

        dy_loss = self.train(to_static=False)
        st_loss = self.train(to_static=True)
        self.assertEqual(dy_loss[0], st_loss[0])

        paddle.enable_static()


471 472
if __name__ == "__main__":
    unittest.main()