test_imperative_resnet.py 16.3 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import six

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
M
minqiyang 已提交
22
from paddle.fluid.layer_helper import LayerHelper
23
from paddle.fluid import Conv2D, Pool2D, BatchNorm, Linear
L
lujun 已提交
24
from paddle.fluid.dygraph.base import to_variable
M
minqiyang 已提交
25
from test_imperative_base import new_program_scope
26
from utils import DyGraphProgramDescTracerTestHelper, is_equal_program
27
from paddle.fluid.dygraph import TracedLayer
J
Jiabin Yang 已提交
28
from paddle.fluid.framework import _test_eager_guard, _in_legacy_dygraph
M
minqiyang 已提交
29

30 31
#NOTE(zhiqiu): run with FLAGS_cudnn_deterministic=1

32
batch_size = 8
M
minqiyang 已提交
33 34 35 36 37 38
train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "piecewise_decay",
M
minqiyang 已提交
39
        "batch_size": batch_size,
M
minqiyang 已提交
40 41
        "epochs": [30, 60, 90],
        "steps": [0.1, 0.01, 0.001, 0.0001]
M
minqiyang 已提交
42
    },
M
minqiyang 已提交
43
    "batch_size": batch_size,
M
minqiyang 已提交
44 45
    "lr": 0.1,
    "total_images": 1281164,
M
minqiyang 已提交
46 47 48
}


49
def optimizer_setting(params, parameter_list=None):
M
minqiyang 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62
    ls = params["learning_strategy"]
    if ls["name"] == "piecewise_decay":
        if "total_images" not in params:
            total_images = 1281167
        else:
            total_images = params["total_images"]
        batch_size = ls["batch_size"]
        step = int(total_images / batch_size + 1)

        bd = [step * e for e in ls["epochs"]]
        base_lr = params["lr"]
        lr = []
        lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
J
Jiabin Yang 已提交
63
        if fluid._non_static_mode():
64 65 66 67
            optimizer = fluid.optimizer.SGD(learning_rate=0.01,
                                            parameter_list=parameter_list)
        else:
            optimizer = fluid.optimizer.SGD(learning_rate=0.01)
L
lujun 已提交
68
        # TODO(minqiyang): Add learning rate scheduler support to dygraph mode
M
minqiyang 已提交
69
        #  optimizer = fluid.optimizer.Momentum(
70 71 72 73 74
        #  learning_rate=params["lr"],
        #  learning_rate=fluid.layers.piecewise_decay(
        #  boundaries=bd, values=lr),
        #  momentum=0.9,
        #  regularization=fluid.regularizer.L2Decay(1e-4))
M
minqiyang 已提交
75 76 77 78

    return optimizer


79
class ConvBNLayer(fluid.Layer):
80

M
minqiyang 已提交
81
    def __init__(self,
82
                 num_channels,
M
minqiyang 已提交
83 84 85 86
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
87 88
                 act=None,
                 use_cudnn=False):
89
        super(ConvBNLayer, self).__init__()
M
minqiyang 已提交
90

91 92 93 94 95 96 97 98 99
        self._conv = Conv2D(num_channels=num_channels,
                            num_filters=num_filters,
                            filter_size=filter_size,
                            stride=stride,
                            padding=(filter_size - 1) // 2,
                            groups=groups,
                            act=None,
                            bias_attr=False,
                            use_cudnn=use_cudnn)
M
minqiyang 已提交
100

101
        self._batch_norm = BatchNorm(num_filters, act=act)
M
minqiyang 已提交
102 103 104

    def forward(self, inputs):
        y = self._conv(inputs)
105
        y = self._batch_norm(y)
M
minqiyang 已提交
106 107 108 109

        return y


110
class BottleneckBlock(fluid.Layer):
111

112 113 114 115 116 117
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 use_cudnn=False):
118
        super(BottleneckBlock, self).__init__()
M
minqiyang 已提交
119

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
        self.conv0 = ConvBNLayer(num_channels=num_channels,
                                 num_filters=num_filters,
                                 filter_size=1,
                                 act='relu',
                                 use_cudnn=use_cudnn)
        self.conv1 = ConvBNLayer(num_channels=num_filters,
                                 num_filters=num_filters,
                                 filter_size=3,
                                 stride=stride,
                                 act='relu',
                                 use_cudnn=use_cudnn)
        self.conv2 = ConvBNLayer(num_channels=num_filters,
                                 num_filters=num_filters * 4,
                                 filter_size=1,
                                 act=None,
                                 use_cudnn=use_cudnn)
M
minqiyang 已提交
136

M
minqiyang 已提交
137
        if not shortcut:
138 139 140 141 142
            self.short = ConvBNLayer(num_channels=num_channels,
                                     num_filters=num_filters * 4,
                                     filter_size=1,
                                     stride=stride,
                                     use_cudnn=use_cudnn)
M
minqiyang 已提交
143 144 145 146

        self.shortcut = shortcut

    def forward(self, inputs):
M
minqiyang 已提交
147 148 149
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)
M
minqiyang 已提交
150 151

        if self.shortcut:
M
minqiyang 已提交
152 153 154
            short = inputs
        else:
            short = self.short(inputs)
M
minqiyang 已提交
155

M
minqiyang 已提交
156 157
        y = fluid.layers.elementwise_add(x=short, y=conv2)

X
Xin Pan 已提交
158
        layer_helper = LayerHelper(self.full_name(), act='relu')
M
minqiyang 已提交
159
        return layer_helper.append_activation(y)
M
minqiyang 已提交
160 161


162
class ResNet(fluid.Layer):
163

H
hong 已提交
164
    def __init__(self, layers=50, class_dim=102, use_cudnn=True):
165
        super(ResNet, self).__init__()
M
minqiyang 已提交
166

M
minqiyang 已提交
167 168 169 170 171 172 173 174 175 176 177
        self.layers = layers
        supported_layers = [50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers, layers)

        if layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
178
        num_channels = [64, 256, 512, 1024]
M
minqiyang 已提交
179 180
        num_filters = [64, 128, 256, 512]

181 182 183 184 185 186 187 188 189 190
        self.conv = ConvBNLayer(num_channels=3,
                                num_filters=64,
                                filter_size=7,
                                stride=2,
                                act='relu',
                                use_cudnn=use_cudnn)
        self.pool2d_max = Pool2D(pool_size=3,
                                 pool_stride=2,
                                 pool_padding=1,
                                 pool_type='max')
M
minqiyang 已提交
191

M
minqiyang 已提交
192 193 194 195
        self.bottleneck_block_list = []
        for block in range(len(depth)):
            shortcut = False
            for i in range(depth[block]):
X
Xin Pan 已提交
196 197
                bottleneck_block = self.add_sublayer(
                    'bb_%d_%d' % (block, i),
198 199 200 201 202 203
                    BottleneckBlock(num_channels=num_channels[block]
                                    if i == 0 else num_filters[block] * 4,
                                    num_filters=num_filters[block],
                                    stride=2 if i == 0 and block != 0 else 1,
                                    shortcut=shortcut,
                                    use_cudnn=use_cudnn))
M
minqiyang 已提交
204 205 206
                self.bottleneck_block_list.append(bottleneck_block)
                shortcut = True

207 208 209
        self.pool2d_avg = Pool2D(pool_size=7,
                                 pool_type='avg',
                                 global_pooling=True)
M
minqiyang 已提交
210

211 212
        self.pool2d_avg_output = num_filters[-1] * 4 * 1 * 1

M
minqiyang 已提交
213 214 215
        import math
        stdv = 1.0 / math.sqrt(2048 * 1.0)

216 217 218 219 220 221
        self.out = Linear(
            self.pool2d_avg_output,
            class_dim,
            act='softmax',
            param_attr=fluid.param_attr.ParamAttr(
                initializer=fluid.initializer.Uniform(-stdv, stdv)))
M
minqiyang 已提交
222 223 224 225

    def forward(self, inputs):
        y = self.conv(inputs)
        y = self.pool2d_max(y)
M
minqiyang 已提交
226 227 228
        for bottleneck_block in self.bottleneck_block_list:
            y = bottleneck_block(y)
        y = self.pool2d_avg(y)
229
        y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_output])
M
minqiyang 已提交
230
        y = self.out(y)
M
minqiyang 已提交
231 232 233
        return y


L
lujun 已提交
234
class TestDygraphResnet(unittest.TestCase):
235

236
    def reader_decorator(self, reader):
237

238 239 240 241 242 243 244 245
        def _reader_imple():
            for item in reader():
                doc = np.array(item[0]).reshape(3, 224, 224)
                label = np.array(item[1]).astype('int64').reshape(1)
                yield doc, label

        return _reader_imple

246
    def func_test_resnet_float32(self):
M
minqiyang 已提交
247 248
        seed = 90

249
        batch_size = train_parameters["batch_size"]
250 251
        batch_num = 10

252 253
        traced_layer = None

L
lujun 已提交
254
        with fluid.dygraph.guard():
C
cnn 已提交
255
            paddle.seed(seed)
L
Leo Chen 已提交
256
            paddle.framework.random._manual_program_seed(seed)
257

258
            resnet = ResNet()
259 260
            optimizer = optimizer_setting(train_parameters,
                                          parameter_list=resnet.parameters())
261
            np.random.seed(seed)
262

263 264 265
            train_reader = paddle.batch(
                paddle.dataset.flowers.train(use_xmap=False),
                batch_size=batch_size)
266 267

            dy_param_init_value = {}
M
minqiyang 已提交
268
            for param in resnet.parameters():
269
                dy_param_init_value[param.name] = param.numpy()
270

271 272
            helper = DyGraphProgramDescTracerTestHelper(self)
            program = None
273

274
            for batch_id, data in enumerate(train_reader()):
M
minqiyang 已提交
275
                if batch_id >= batch_num:
276 277
                    break

278 279 280 281
                dy_x_data = np.array([x[0].reshape(3, 224, 224)
                                      for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data
                                   ]).astype('int64').reshape(batch_size, 1)
282 283 284

                img = to_variable(dy_x_data)
                label = to_variable(y_data)
285
                label.stop_gradient = True
286

287
                out = None
J
Jiabin Yang 已提交
288
                if batch_id % 5 == 0 and _in_legacy_dygraph():
289 290 291 292 293 294 295 296 297
                    out, traced_layer = TracedLayer.trace(resnet, img)
                    if program is not None:
                        self.assertTrue(
                            is_equal_program(program, traced_layer.program))

                    traced_layer.save_inference_model(
                        './infer_imperative_resnet')

                    program = traced_layer.program
298 299 300
                else:
                    out = resnet(img)

301 302 303
                if traced_layer is not None:
                    resnet.eval()
                    traced_layer._switch(is_test=True)
304
                    out_dygraph = resnet(img)
305 306 307 308 309
                    out_static = traced_layer([img])
                    traced_layer._switch(is_test=False)
                    helper.assertEachVar(out_dygraph, out_static)
                    resnet.train()

310
                loss = fluid.layers.cross_entropy(input=out, label=label)
311
                avg_loss = paddle.mean(x=loss)
312

313
                dy_out = avg_loss.numpy()
314 315

                if batch_id == 0:
M
minqiyang 已提交
316
                    for param in resnet.parameters():
317
                        if param.name not in dy_param_init_value:
318
                            dy_param_init_value[param.name] = param.numpy()
319

L
lujun 已提交
320
                avg_loss.backward()
321 322

                dy_grad_value = {}
M
minqiyang 已提交
323
                for param in resnet.parameters():
324
                    if param.trainable:
325 326 327 328
                        np_array = np.array(
                            param._grad_ivar().value().get_tensor())
                        dy_grad_value[param.name +
                                      core.grad_var_suffix()] = np_array
329 330

                optimizer.minimize(avg_loss)
M
minqiyang 已提交
331
                resnet.clear_gradients()
332 333

                dy_param_value = {}
M
minqiyang 已提交
334
                for param in resnet.parameters():
335
                    dy_param_value[param.name] = param.numpy()
M
minqiyang 已提交
336 337

        with new_program_scope():
C
cnn 已提交
338
            paddle.seed(seed)
L
Leo Chen 已提交
339
            paddle.framework.random._manual_program_seed(seed)
M
minqiyang 已提交
340

M
minqiyang 已提交
341 342
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
343

344
            resnet = ResNet()
345
            optimizer = optimizer_setting(train_parameters)
M
minqiyang 已提交
346 347

            np.random.seed(seed)
348
            train_reader = paddle.batch(
M
minqiyang 已提交
349 350
                paddle.dataset.flowers.train(use_xmap=False),
                batch_size=batch_size)
351

352 353 354
            img = fluid.layers.data(name='pixel',
                                    shape=[3, 224, 224],
                                    dtype='float32')
355 356 357
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            out = resnet(img)
            loss = fluid.layers.cross_entropy(input=out, label=label)
358
            avg_loss = paddle.mean(x=loss)
359 360 361 362 363
            optimizer.minimize(avg_loss)

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
M
minqiyang 已提交
364
            static_grad_name_list = []
M
minqiyang 已提交
365
            for param in resnet.parameters():
366
                static_param_name_list.append(param.name)
M
minqiyang 已提交
367
            for param in resnet.parameters():
368
                if param.trainable:
M
minqiyang 已提交
369 370
                    static_grad_name_list.append(param.name +
                                                 core.grad_var_suffix())
371 372 373 374 375 376 377 378

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]

            for batch_id, data in enumerate(train_reader()):
M
minqiyang 已提交
379
                if batch_id >= batch_num:
380 381
                    break

M
minqiyang 已提交
382
                static_x_data = np.array(
383
                    [x[0].reshape(3, 224, 224) for x in data]).astype('float32')
384 385
                y_data = np.array([x[1] for x in data
                                   ]).astype('int64').reshape([batch_size, 1])
386

387 388 389
                if traced_layer is not None:
                    traced_layer([static_x_data])

M
minqiyang 已提交
390
                fetch_list = [avg_loss.name]
391
                fetch_list.extend(static_param_name_list)
M
minqiyang 已提交
392
                fetch_list.extend(static_grad_name_list)
393
                out = exe.run(fluid.default_main_program(),
394 395 396 397
                              feed={
                                  "pixel": static_x_data,
                                  "label": y_data
                              },
398 399 400
                              fetch_list=fetch_list)

                static_param_value = {}
M
minqiyang 已提交
401
                static_grad_value = {}
402
                static_out = out[0]
M
minqiyang 已提交
403 404 405 406 407 408 409 410 411 412 413
                param_start_pos = 1
                grad_start_pos = len(static_param_name_list) + param_start_pos
                for i in range(param_start_pos,
                               len(static_param_name_list) + param_start_pos):
                    static_param_value[static_param_name_list[
                        i - param_start_pos]] = out[i]
                for i in range(grad_start_pos,
                               len(static_grad_name_list) + grad_start_pos):
                    static_grad_value[static_grad_name_list[
                        i - grad_start_pos]] = out[i]

H
hong 已提交
414 415
        print("static", static_out)
        print("dygraph", dy_out)
416
        np.testing.assert_allclose(static_out, dy_out, rtol=1e-05)
M
minqiyang 已提交
417 418

        self.assertEqual(len(dy_param_init_value), len(static_param_init_value))
X
Xin Pan 已提交
419

M
minqiyang 已提交
420
        for key, value in six.iteritems(static_param_init_value):
421 422 423
            np.testing.assert_allclose(value,
                                       dy_param_init_value[key],
                                       rtol=1e-05)
424 425
            self.assertTrue(np.isfinite(value.all()))
            self.assertFalse(np.isnan(value.any()))
426

M
minqiyang 已提交
427
        self.assertEqual(len(dy_grad_value), len(static_grad_value))
M
minqiyang 已提交
428
        for key, value in six.iteritems(static_grad_value):
429
            np.testing.assert_allclose(value, dy_grad_value[key], rtol=1e-05)
430 431
            self.assertTrue(np.isfinite(value.all()))
            self.assertFalse(np.isnan(value.any()))
432

M
minqiyang 已提交
433
        self.assertEqual(len(dy_param_value), len(static_param_value))
M
minqiyang 已提交
434
        for key, value in six.iteritems(static_param_value):
435
            np.testing.assert_allclose(value, dy_param_value[key], rtol=1e-05)
436 437
            self.assertTrue(np.isfinite(value.all()))
            self.assertFalse(np.isnan(value.any()))
M
minqiyang 已提交
438

439 440 441 442 443
    def test_resnet_float32(self):
        with _test_eager_guard():
            self.func_test_resnet_float32()
        self.func_test_resnet_float32()

M
minqiyang 已提交
444 445

if __name__ == '__main__':
H
hong 已提交
446
    paddle.enable_static()
M
minqiyang 已提交
447
    unittest.main()