test_imperative_resnet.py 9.2 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
import numpy as np
import six

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.imperative.nn import Conv2D, Pool2D, BatchNorm, FC
from paddle.fluid.imperative.base import to_variable
from test_imperative_base import new_program_scope

train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "piecewise_decay",
        "batch_size": 256,
        "epochs": [30, 60, 90],
        "steps": [0.1, 0.01, 0.001, 0.0001]
    }
}


def optimizer_setting(params):
    ls = params["learning_strategy"]
    if ls["name"] == "piecewise_decay":
        if "total_images" not in params:
            total_images = 1281167
        else:
            total_images = params["total_images"]
        batch_size = ls["batch_size"]
        step = int(total_images / batch_size + 1)

        bd = [step * e for e in ls["epochs"]]
        base_lr = params["lr"]
        lr = []
        lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
        optimizer = fluid.optimizer.Momentum(
            learning_rate=fluid.layers.piecewise_decay(
                boundaries=bd, values=lr),
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(1e-4))

    return optimizer


class ConvBNLayer(fluid.imperative.Layer):
    def __init__(self, num_filters, filter_size, stride=1, groups=1, act=None):
        super(ConvBNLayer, self).__init__()

        self._conv = Conv2D(
            3,
            num_filters,
            filter_size,
            stride, (filter_size - 1) // 2,
            groups=groups,
            act=None,
            bias_attr=None)

        self._batch_norm = BatchNorm(num_filters, act=act)

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)

        return y


class BottleneckBlock(fluid.imperative.Layer):
    def __init__(self, num_filters, stride, shortcut=False):
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
            num_filters=num_filters, filter_size=1, act='relu')
        self.conv1 = ConvBNLayer(
            num_filters=num_filters, filter_size=3, stride=stride, act='relu')
        self.conv2 = ConvBNLayer(
            num_filters=num_filters * 4, filter_size=1, act=None)

        if shortcut:
            self.short = ConvBNLayer(
                num_filters=num_filters * 4, filter_size=1, stride=stride)

        self.shortcut = shortcut

    def forward(self, inputs):
        self.conv0()
        self.conv1()
        self.conv2()

        if self.shortcut:
            self.short()

        return fluid.layers.elementwise_add(
            x=self.short, y=self.conv2, act='relu')


class ResNet(fluid.imperative.Layer):
    def __init__(self, layers=50, class_dim=1000):
        self.layers = layers
        supported_layers = [50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers, layers)

        if layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        num_filters = [64, 128, 256, 512]

        self.conv = ConvBNLayer(
            num_filters=64, filter_size=7, stride=2, act='relu')
        self.pool2d_max = Pool2D(
            pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')

        self.bottleneck_block_list = []
        for block in range(len(depth)):
            shortcut = True
            for i in range(depth[block]):
                bottleneck_block = BottleneckBlock(
                    num_filters=num_filters[block],
                    stride=2 if i == 0 and block != 0 else 1,
                    shortcut=shortcut)
                self.bottleneck_block_list.append(bottleneck_block)
                shortcut = False

        self.pool2d_avg = Pool2D(
            pool_size=7, pool_type='avg', global_pooling=True)

        import math
        stdv = 1.0 / math.sqrt(2048 * 1.0)

        self.out = FC(size=class_dim,
                      act='softmax',
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.Uniform(-stdv, stdv)))

    def forward(self, inputs):
        y = self.conv(inputs)
        y = self.pool2d_max(y)
        for bottleneck_block in self.bottleneck_block_list:
            y = bottleneck_block(y)
        y = self.pool2d_avg(y)
        y = self.out()
        return y


class TestImperativeResnet(unittest.TestCase):
    def test_resnet_cpu_float32(self):
        seed = 90

        with fluid.imperative.guard():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            resnet = ResNet()
            optimizer = optimizer_setting(train_parameters)
            train_reader = paddle.batch(
                paddle.dataset.flowers.train(), batch_size=256)

            dy_param_init_value = {}
            for batch_id, data in enumerate(train_reader()):
                if batch_id >= 2:
                    break

                x_data = np.array(
                    [x[0].reshape(1, 28, 28) for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    128, 1)

                img = to_variable(x_data)
                label = to_variable(y_data)
                label._stop_gradient = True

                cost = resnet(img)
                loss = fluid.layers.cross_entropy(input=out, label=label)
                avg_loss = fluid.layers.mean(x=cost)
                dy_out = avg_loss._numpy()

                if batch_id == 0:
                    for param in fluid.default_main_program().global_block(
                    ).all_parameters():
                        dy_param_init_value[param.name] = param._numpy()

                avg_loss._backward()
                optimizer.minimize(avg_loss)
                dy_param_value = {}
                for param in fluid.default_main_program().global_block(
                ).all_parameters():
                    dy_param_value[param.name] = param._numpy()

        #  with new_program_scope():
        #  fluid.default_startup_program().random_seed = seed
        #  fluid.default_main_program().random_seed = seed

        #  exe = fluid.Executor(fluid.CPUPlace())

        #  #  mnist = Conv2D(1, 20, 5)
        #  mnist = MNIST()
        #  sgd = SGDOptimizer(learning_rate=1e-3)
        #  train_reader = paddle.batch(
        #  paddle.dataset.mnist.train(), batch_size=128)

        #  img = fluid.layers.data(
        #  name='pixel', shape=[1, 28, 28], dtype='float32')
        #  label = fluid.layers.data(name='label', shape=[1], dtype='int64')
        #  cost = mnist(img)
        #  loss = fluid.layers.reduce_mean(cost)
        #  sgd.minimize(loss)

        #  # initialize params and fetch them
        #  static_param_init_value = {}
        #  static_param_name_list = []
        #  for param in fluid.default_startup_program().global_block(
        #  ).all_parameters():
        #  static_param_name_list.append(param.name)

        #  out = exe.run(fluid.default_startup_program(),
        #  fetch_list=static_param_name_list)

        #  for i in range(len(static_param_name_list)):
        #  static_param_init_value[static_param_name_list[i]] = out[i]

        #  for batch_id, data in enumerate(train_reader()):
        #  if batch_id >= 2:
        #  break

        #  x_data = np.array(
        #  [x[0].reshape(1, 28, 28) for x in data]).astype('float32')
        #  y_data = np.array([x[1] for x in data]).astype('int64').reshape(
        #  [128, 1])

        #  fetch_list = [loss.name]
        #  fetch_list.extend(static_param_name_list)
        #  out = exe.run(fluid.default_main_program(),
        #  feed={"pixel": x_data,
        #  "label": y_data},
        #  fetch_list=fetch_list)

        #  static_param_value = {}
        #  static_out = out[0]
        #  for i in range(1, len(out)):
        #  static_param_value[static_param_name_list[i - 1]] = out[i]

        #  for key, value in six.iteritems(static_param_init_value):
        #  self.assertTrue(
        #  np.allclose(value.all(), dy_param_init_value[key].all()))
        #  self.assertTrue(np.allclose(static_out.all(), dy_out.all()))
        #  for key, value in six.iteritems(static_param_value):
        #  self.assertTrue(np.allclose(value.all(), dy_param_value[key].all()))


if __name__ == '__main__':
    unittest.main()