test_weight_decay_extend.py 7.0 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import six
C
chengduo 已提交
16 17 18 19 20 21 22
import unittest
from functools import partial
import numpy as np
import paddle
import paddle.fluid as fluid
import contextlib

P
pangyoki 已提交
23 24
paddle.enable_static()

25 26
SEED = 2020

C
chengduo 已提交
27

28 29 30 31 32
def fake_imdb_reader(word_dict_size,
                     sample_num,
                     lower_seq_len=100,
                     upper_seq_len=200,
                     class_dim=2):
33

34 35
    def __reader__():
        for _ in six.moves.range(sample_num):
36 37 38 39 40 41 42 43 44
            length = np.random.random_integers(low=lower_seq_len,
                                               high=upper_seq_len,
                                               size=[1])[0]
            ids = np.random.random_integers(low=0,
                                            high=word_dict_size - 1,
                                            size=[length]).astype('int64')
            label = np.random.random_integers(low=0,
                                              high=class_dim - 1,
                                              size=[1]).astype('int64')[0]
45 46 47 48 49
            yield ids, label

    return __reader__


C
chengduo 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
def get_places():
    places = [fluid.CPUPlace()]
    if fluid.core.is_compiled_with_cuda():
        places.append(fluid.CUDAPlace(0))
    return places


@contextlib.contextmanager
def prog_scope_guard(main_prog, startup_prog):
    scope = fluid.core.Scope()
    with fluid.unique_name.guard():
        with fluid.scope_guard(scope):
            with fluid.program_guard(main_prog, startup_prog):
                yield


def bow_net(data,
            label,
            dict_dim,
            is_sparse=False,
            emb_dim=128,
            hid_dim=128,
            hid_dim2=96,
            class_dim=2):
    """
    BOW net
    This model is from https://github.com/PaddlePaddle/models:
    fluid/PaddleNLP/text_classification/nets.py
    """
79 80 81
    emb = fluid.layers.embedding(input=data,
                                 is_sparse=is_sparse,
                                 size=[dict_dim, emb_dim])
C
chengduo 已提交
82 83 84 85 86 87
    bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
    bow_tanh = fluid.layers.tanh(bow)
    fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
    fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
    prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
88
    avg_cost = paddle.mean(x=cost)
C
chengduo 已提交
89 90 91 92 93

    return avg_cost


class TestWeightDecay(unittest.TestCase):
94

C
chengduo 已提交
95
    def setUp(self):
96 97 98 99 100
        # set seed
        np.random.seed(SEED)
        paddle.seed(SEED)
        paddle.framework.random._manual_program_seed(SEED)
        # configs
101 102 103 104 105
        self.word_dict_len = 5147
        batch_size = 2
        reader = fake_imdb_reader(self.word_dict_len, batch_size * 100)
        reader = paddle.batch(reader, batch_size=batch_size)()
        self.train_data = [next(reader) for _ in range(3)]
C
chengduo 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
        self.learning_rate = .5

    def run_program(self, place, feed_list):
        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
        exe.run(fluid.default_startup_program())

        main_prog = fluid.default_main_program()
        param_list = [var.name for var in main_prog.block(0).all_parameters()]

        param_sum = []
        for data in self.train_data:
            out = exe.run(main_prog,
                          feed=feeder.feed(data),
                          fetch_list=param_list)
            p_sum = 0
            for v in out:
                p_sum += np.sum(np.abs(v))
            param_sum.append(p_sum)
        return param_sum

    def check_weight_decay(self, place, model):
        main_prog = fluid.framework.Program()
        startup_prog = fluid.framework.Program()
L
Leo Chen 已提交
130

C
chengduo 已提交
131
        with prog_scope_guard(main_prog=main_prog, startup_prog=startup_prog):
132 133 134 135
            data = fluid.layers.data(name="words",
                                     shape=[1],
                                     dtype="int64",
                                     lod_level=1)
C
chengduo 已提交
136
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
137
            avg_cost = model(data, label, self.word_dict_len)
C
chengduo 已提交
138 139 140
            AdamW = fluid.contrib.extend_with_decoupled_weight_decay(
                fluid.optimizer.Adam)

141 142
            optimizer = AdamW(learning_rate=self.learning_rate,
                              weight_decay=self.learning_rate)
C
chengduo 已提交
143 144 145 146 147 148 149 150 151

            optimizer.minimize(avg_cost)
            param_sum = self.run_program(place, [data, label])

        return param_sum

    def check_weight_decay2(self, place, model):
        main_prog = fluid.framework.Program()
        startup_prog = fluid.framework.Program()
L
Leo Chen 已提交
152

C
chengduo 已提交
153
        with prog_scope_guard(main_prog=main_prog, startup_prog=startup_prog):
154 155 156 157
            data = fluid.layers.data(name="words",
                                     shape=[1],
                                     dtype="int64",
                                     lod_level=1)
C
chengduo 已提交
158 159
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")

160
            avg_cost = model(data, label, self.word_dict_len)
C
chengduo 已提交
161

162 163 164 165
            optimizer = fluid.optimizer.Adam(learning_rate=self.learning_rate)

            params_grads = optimizer.backward(avg_cost)

C
chengduo 已提交
166 167 168 169
            param_list = [(var, var * self.learning_rate)
                          for var in main_prog.block(0).all_parameters()]

            for params in param_list:
170 171
                updated_p = fluid.layers.elementwise_sub(x=params[0],
                                                         y=params[1])
C
chengduo 已提交
172 173
                fluid.layers.assign(input=updated_p, output=params[0])

174 175
            optimizer.apply_optimize(avg_cost, startup_prog, params_grads)

C
chengduo 已提交
176 177 178 179 180 181 182 183 184 185
            param_sum = self.run_program(place, [data, label])
        return param_sum

    def test_weight_decay(self):
        for place in get_places():
            model = partial(bow_net, is_sparse=False)
            param_sum1 = self.check_weight_decay(place, model)
            param_sum2 = self.check_weight_decay2(place, model)

            for i in range(len(param_sum1)):
186 187 188 189 190 191
                np.testing.assert_allclose(
                    param_sum1[i],
                    param_sum2[i],
                    rtol=1e-05,
                    err_msg='Current place: {}, i: {}, sum1: {}, sum2: {}'.
                    format(
192 193 194 195
                        place, i, param_sum1[i]
                        [~np.isclose(param_sum1[i], param_sum2[i])],
                        param_sum2[i]
                        [~np.isclose(param_sum1[i], param_sum2[i])]))
C
chengduo 已提交
196 197 198 199


if __name__ == '__main__':
    unittest.main()