test_weight_decay_extend.py 7.0 KB
Newer Older
C
chengduo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import six
C
chengduo 已提交
18 19 20 21 22 23 24
import unittest
from functools import partial
import numpy as np
import paddle
import paddle.fluid as fluid
import contextlib

P
pangyoki 已提交
25 26
paddle.enable_static()

27 28
SEED = 2020

C
chengduo 已提交
29

30 31 32 33 34
def fake_imdb_reader(word_dict_size,
                     sample_num,
                     lower_seq_len=100,
                     upper_seq_len=200,
                     class_dim=2):
35

36 37
    def __reader__():
        for _ in six.moves.range(sample_num):
38 39 40 41 42 43 44 45 46
            length = np.random.random_integers(low=lower_seq_len,
                                               high=upper_seq_len,
                                               size=[1])[0]
            ids = np.random.random_integers(low=0,
                                            high=word_dict_size - 1,
                                            size=[length]).astype('int64')
            label = np.random.random_integers(low=0,
                                              high=class_dim - 1,
                                              size=[1]).astype('int64')[0]
47 48 49 50 51
            yield ids, label

    return __reader__


C
chengduo 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
def get_places():
    places = [fluid.CPUPlace()]
    if fluid.core.is_compiled_with_cuda():
        places.append(fluid.CUDAPlace(0))
    return places


@contextlib.contextmanager
def prog_scope_guard(main_prog, startup_prog):
    scope = fluid.core.Scope()
    with fluid.unique_name.guard():
        with fluid.scope_guard(scope):
            with fluid.program_guard(main_prog, startup_prog):
                yield


def bow_net(data,
            label,
            dict_dim,
            is_sparse=False,
            emb_dim=128,
            hid_dim=128,
            hid_dim2=96,
            class_dim=2):
    """
    BOW net
    This model is from https://github.com/PaddlePaddle/models:
    fluid/PaddleNLP/text_classification/nets.py
    """
81 82 83
    emb = fluid.layers.embedding(input=data,
                                 is_sparse=is_sparse,
                                 size=[dict_dim, emb_dim])
C
chengduo 已提交
84 85 86 87 88 89 90 91 92 93 94 95
    bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
    bow_tanh = fluid.layers.tanh(bow)
    fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
    fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
    prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    return avg_cost


class TestWeightDecay(unittest.TestCase):
96

C
chengduo 已提交
97
    def setUp(self):
98 99 100 101 102
        # set seed
        np.random.seed(SEED)
        paddle.seed(SEED)
        paddle.framework.random._manual_program_seed(SEED)
        # configs
103 104 105 106 107
        self.word_dict_len = 5147
        batch_size = 2
        reader = fake_imdb_reader(self.word_dict_len, batch_size * 100)
        reader = paddle.batch(reader, batch_size=batch_size)()
        self.train_data = [next(reader) for _ in range(3)]
C
chengduo 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
        self.learning_rate = .5

    def run_program(self, place, feed_list):
        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
        exe.run(fluid.default_startup_program())

        main_prog = fluid.default_main_program()
        param_list = [var.name for var in main_prog.block(0).all_parameters()]

        param_sum = []
        for data in self.train_data:
            out = exe.run(main_prog,
                          feed=feeder.feed(data),
                          fetch_list=param_list)
            p_sum = 0
            for v in out:
                p_sum += np.sum(np.abs(v))
            param_sum.append(p_sum)
        return param_sum

    def check_weight_decay(self, place, model):
        main_prog = fluid.framework.Program()
        startup_prog = fluid.framework.Program()
L
Leo Chen 已提交
132

C
chengduo 已提交
133
        with prog_scope_guard(main_prog=main_prog, startup_prog=startup_prog):
134 135 136 137
            data = fluid.layers.data(name="words",
                                     shape=[1],
                                     dtype="int64",
                                     lod_level=1)
C
chengduo 已提交
138
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
139
            avg_cost = model(data, label, self.word_dict_len)
C
chengduo 已提交
140 141 142
            AdamW = fluid.contrib.extend_with_decoupled_weight_decay(
                fluid.optimizer.Adam)

143 144
            optimizer = AdamW(learning_rate=self.learning_rate,
                              weight_decay=self.learning_rate)
C
chengduo 已提交
145 146 147 148 149 150 151 152 153

            optimizer.minimize(avg_cost)
            param_sum = self.run_program(place, [data, label])

        return param_sum

    def check_weight_decay2(self, place, model):
        main_prog = fluid.framework.Program()
        startup_prog = fluid.framework.Program()
L
Leo Chen 已提交
154

C
chengduo 已提交
155
        with prog_scope_guard(main_prog=main_prog, startup_prog=startup_prog):
156 157 158 159
            data = fluid.layers.data(name="words",
                                     shape=[1],
                                     dtype="int64",
                                     lod_level=1)
C
chengduo 已提交
160 161
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")

162
            avg_cost = model(data, label, self.word_dict_len)
C
chengduo 已提交
163

164 165 166 167
            optimizer = fluid.optimizer.Adam(learning_rate=self.learning_rate)

            params_grads = optimizer.backward(avg_cost)

C
chengduo 已提交
168 169 170 171
            param_list = [(var, var * self.learning_rate)
                          for var in main_prog.block(0).all_parameters()]

            for params in param_list:
172 173
                updated_p = fluid.layers.elementwise_sub(x=params[0],
                                                         y=params[1])
C
chengduo 已提交
174 175
                fluid.layers.assign(input=updated_p, output=params[0])

176 177
            optimizer.apply_optimize(avg_cost, startup_prog, params_grads)

C
chengduo 已提交
178 179 180 181 182 183 184 185 186 187
            param_sum = self.run_program(place, [data, label])
        return param_sum

    def test_weight_decay(self):
        for place in get_places():
            model = partial(bow_net, is_sparse=False)
            param_sum1 = self.check_weight_decay(place, model)
            param_sum2 = self.check_weight_decay2(place, model)

            for i in range(len(param_sum1)):
188 189 190
                self.assertTrue(
                    np.allclose(param_sum1[i], param_sum2[i]),
                    "Current place: {}, i: {}, sum1: {}, sum2: {}".format(
191 192 193 194
                        place, i, param_sum1[i]
                        [~np.isclose(param_sum1[i], param_sum2[i])],
                        param_sum2[i]
                        [~np.isclose(param_sum1[i], param_sum2[i])]))
C
chengduo 已提交
195 196 197 198


if __name__ == '__main__':
    unittest.main()