movielens.py 8.8 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14 15 16
"""
Movielens 1-M dataset.

Q
qijun 已提交
17 18
Movielens 1-M dataset contains 1 million ratings from 6000 users on 4000
movies, which was collected by GroupLens Research. This module will download
19
Movielens 1-M dataset from
Q
qijun 已提交
20 21
http://files.grouplens.org/datasets/movielens/ml-1m.zip and parse training
set and test set into paddle reader creators.
Q
qijun 已提交
22

Y
Yu Yang 已提交
23
"""
D
dangqingqing 已提交
24

25
import numpy as np
Y
Yu Yang 已提交
26
import zipfile
27
import paddle.dataset.common
28
import paddle.utils.deprecated as deprecated
Y
Yu Yang 已提交
29 30
import re
import functools
M
minqiyang 已提交
31
import six
Y
Yu Yang 已提交
32

33 34
__all__ = []

Y
Refine  
Yu Yang 已提交
35
age_table = [1, 18, 25, 35, 45, 50, 56]
Y
Yu Yang 已提交
36

37 38
#URL = 'http://files.grouplens.org/datasets/movielens/ml-1m.zip'
URL = 'https://dataset.bj.bcebos.com/movielens%2Fml-1m.zip'
Y
Yancey1989 已提交
39 40
MD5 = 'c4d9eecfca2ab87c1945afe126590906'

Y
Yu Yang 已提交
41 42

class MovieInfo(object):
Q
qijun 已提交
43 44 45
    """
    Movie id, title and categories information are stored in MovieInfo.
    """
Q
qijun 已提交
46

Y
Yu Yang 已提交
47 48 49 50 51 52
    def __init__(self, index, categories, title):
        self.index = int(index)
        self.categories = categories
        self.title = title

    def value(self):
Q
qijun 已提交
53
        """
Q
qijun 已提交
54
        Get information from a movie.
Q
qijun 已提交
55
        """
Y
Yu Yang 已提交
56 57 58 59 60
        return [
            self.index, [CATEGORIES_DICT[c] for c in self.categories],
            [MOVIE_TITLE_DICT[w.lower()] for w in self.title.split()]
        ]

Y
Yu Yang 已提交
61 62 63 64 65 66 67
    def __str__(self):
        return "<MovieInfo id(%d), title(%s), categories(%s)>" % (
            self.index, self.title, self.categories)

    def __repr__(self):
        return self.__str__()

Y
Yu Yang 已提交
68 69

class UserInfo(object):
Q
qijun 已提交
70 71 72
    """
    User id, gender, age, and job information are stored in UserInfo.
    """
Q
qijun 已提交
73

Y
Yu Yang 已提交
74 75 76
    def __init__(self, index, gender, age, job_id):
        self.index = int(index)
        self.is_male = gender == 'M'
Y
Refine  
Yu Yang 已提交
77
        self.age = age_table.index(int(age))
Y
Yu Yang 已提交
78 79 80
        self.job_id = int(job_id)

    def value(self):
Q
qijun 已提交
81
        """
Q
qijun 已提交
82
        Get information from a user.
Q
qijun 已提交
83
        """
Y
Yu Yang 已提交
84 85
        return [self.index, 0 if self.is_male else 1, self.age, self.job_id]

Y
Yu Yang 已提交
86 87
    def __str__(self):
        return "<UserInfo id(%d), gender(%s), age(%d), job(%d)>" % (
88 89
            self.index, "M" if self.is_male else "F", age_table[self.age],
            self.job_id)
Y
Yu Yang 已提交
90 91 92 93

    def __repr__(self):
        return str(self)

Y
Yu Yang 已提交
94 95 96 97 98 99 100 101

MOVIE_INFO = None
MOVIE_TITLE_DICT = None
CATEGORIES_DICT = None
USER_INFO = None


def __initialize_meta_info__():
102
    fn = paddle.dataset.common.download(URL, "movielens", MD5)
Y
Yu Yang 已提交
103 104 105 106 107 108 109 110 111 112 113
    global MOVIE_INFO
    if MOVIE_INFO is None:
        pattern = re.compile(r'^(.*)\((\d+)\)$')
        with zipfile.ZipFile(file=fn) as package:
            for info in package.infolist():
                assert isinstance(info, zipfile.ZipInfo)
                MOVIE_INFO = dict()
                title_word_set = set()
                categories_set = set()
                with package.open('ml-1m/movies.dat') as movie_file:
                    for i, line in enumerate(movie_file):
114
                        line = line.decode(encoding='latin')
Y
Yu Yang 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
                        movie_id, title, categories = line.strip().split('::')
                        categories = categories.split('|')
                        for c in categories:
                            categories_set.add(c)
                        title = pattern.match(title).group(1)
                        MOVIE_INFO[int(movie_id)] = MovieInfo(
                            index=movie_id, categories=categories, title=title)
                        for w in title.split():
                            title_word_set.add(w.lower())

                global MOVIE_TITLE_DICT
                MOVIE_TITLE_DICT = dict()
                for i, w in enumerate(title_word_set):
                    MOVIE_TITLE_DICT[w] = i

                global CATEGORIES_DICT
                CATEGORIES_DICT = dict()
                for i, c in enumerate(categories_set):
                    CATEGORIES_DICT[c] = i

                global USER_INFO
                USER_INFO = dict()
                with package.open('ml-1m/users.dat') as user_file:
                    for line in user_file:
139
                        line = line.decode(encoding='latin')
Y
Yu Yang 已提交
140
                        uid, gender, age, job, _ = line.strip().split("::")
141 142 143 144
                        USER_INFO[int(uid)] = UserInfo(index=uid,
                                                       gender=gender,
                                                       age=age,
                                                       job_id=job)
Y
Yu Yang 已提交
145 146 147 148 149
    return fn


def __reader__(rand_seed=0, test_ratio=0.1, is_test=False):
    fn = __initialize_meta_info__()
150
    np.random.seed(rand_seed)
Y
Yu Yang 已提交
151 152 153
    with zipfile.ZipFile(file=fn) as package:
        with package.open('ml-1m/ratings.dat') as rating:
            for line in rating:
154
                line = line.decode(encoding='latin')
155
                if (np.random.random() < test_ratio) == is_test:
Y
Yu Yang 已提交
156 157 158 159 160 161 162 163 164 165
                    uid, mov_id, rating, _ = line.strip().split("::")
                    uid = int(uid)
                    mov_id = int(mov_id)
                    rating = float(rating) * 2 - 5.0

                    mov = MOVIE_INFO[mov_id]
                    usr = USER_INFO[uid]
                    yield usr.value() + mov.value() + [[rating]]


166 167 168
@deprecated(
    since="2.0.0",
    update_to="paddle.text.datasets.Movielens",
169
    level=1,
170
    reason="Please use new dataset API which supports paddle.io.DataLoader")
Y
Yu Yang 已提交
171 172 173 174
def __reader_creator__(**kwargs):
    return lambda: __reader__(**kwargs)


Y
Refine  
Yu Yang 已提交
175 176
train = functools.partial(__reader_creator__, is_test=False)
test = functools.partial(__reader_creator__, is_test=True)
Y
Yu Yang 已提交
177 178


179 180 181
@deprecated(
    since="2.0.0",
    update_to="paddle.text.datasets.Movielens",
182
    level=1,
183
    reason="Please use new dataset API which supports paddle.io.DataLoader")
Y
Yu Yang 已提交
184
def get_movie_title_dict():
Q
qijun 已提交
185 186 187
    """
    Get movie title dictionary.
    """
Y
Yu Yang 已提交
188 189 190 191
    __initialize_meta_info__()
    return MOVIE_TITLE_DICT


Y
Refine  
Yu Yang 已提交
192 193 194 195 196 197 198
def __max_index_info__(a, b):
    if a.index > b.index:
        return a
    else:
        return b


199 200 201
@deprecated(
    since="2.0.0",
    update_to="paddle.text.datasets.Movielens",
202
    level=1,
203
    reason="Please use new dataset API which supports paddle.io.DataLoader")
Y
Refine  
Yu Yang 已提交
204
def max_movie_id():
Q
qijun 已提交
205 206 207
    """
    Get the maximum value of movie id.
    """
Y
Refine  
Yu Yang 已提交
208
    __initialize_meta_info__()
M
minqiyang 已提交
209
    return six.moves.reduce(__max_index_info__, list(MOVIE_INFO.values())).index
Y
Refine  
Yu Yang 已提交
210 211


212 213 214
@deprecated(
    since="2.0.0",
    update_to="paddle.text.datasets.Movielens",
215
    level=1,
216
    reason="Please use new dataset API which supports paddle.io.DataLoader")
Y
Refine  
Yu Yang 已提交
217
def max_user_id():
Q
qijun 已提交
218 219 220
    """
    Get the maximum value of user id.
    """
Y
Refine  
Yu Yang 已提交
221
    __initialize_meta_info__()
M
minqiyang 已提交
222
    return six.moves.reduce(__max_index_info__, list(USER_INFO.values())).index
Y
Refine  
Yu Yang 已提交
223 224


Y
Yu Yang 已提交
225 226 227 228 229 230 231
def __max_job_id_impl__(a, b):
    if a.job_id > b.job_id:
        return a
    else:
        return b


232 233 234
@deprecated(
    since="2.0.0",
    update_to="paddle.text.datasets.Movielens",
235
    level=1,
236
    reason="Please use new dataset API which supports paddle.io.DataLoader")
Y
Yu Yang 已提交
237
def max_job_id():
Q
qijun 已提交
238 239 240
    """
    Get the maximum value of job id.
    """
Y
Yu Yang 已提交
241
    __initialize_meta_info__()
M
minqiyang 已提交
242 243
    return six.moves.reduce(__max_job_id_impl__,
                            list(USER_INFO.values())).job_id
Y
Yu Yang 已提交
244 245


246 247 248
@deprecated(
    since="2.0.0",
    update_to="paddle.text.datasets.Movielens",
249
    level=1,
250
    reason="Please use new dataset API which supports paddle.io.DataLoader")
Y
Yu Yang 已提交
251
def movie_categories():
Q
qijun 已提交
252
    """
T
tianshuo78520a 已提交
253
    Get movie categories dictionary.
Q
qijun 已提交
254
    """
Y
Yu Yang 已提交
255 256 257 258
    __initialize_meta_info__()
    return CATEGORIES_DICT


259 260 261
@deprecated(
    since="2.0.0",
    update_to="paddle.text.datasets.Movielens",
262
    level=1,
263
    reason="Please use new dataset API which supports paddle.io.DataLoader")
Y
Yu Yang 已提交
264
def user_info():
Q
qijun 已提交
265 266 267
    """
    Get user info dictionary.
    """
Y
Yu Yang 已提交
268 269 270 271
    __initialize_meta_info__()
    return USER_INFO


272 273 274
@deprecated(
    since="2.0.0",
    update_to="paddle.text.datasets.Movielens",
275
    level=1,
276
    reason="Please use new dataset API which supports paddle.io.DataLoader")
Y
Yu Yang 已提交
277
def movie_info():
Q
qijun 已提交
278 279 280
    """
    Get movie info dictionary.
    """
Y
Yu Yang 已提交
281 282 283 284
    __initialize_meta_info__()
    return MOVIE_INFO


Y
Yu Yang 已提交
285
def unittest():
Y
Refine  
Yu Yang 已提交
286
    for train_count, _ in enumerate(train()()):
Y
Yu Yang 已提交
287
        pass
Y
Refine  
Yu Yang 已提交
288
    for test_count, _ in enumerate(test()()):
Y
Yu Yang 已提交
289 290
        pass

291
    print(train_count, test_count)
Y
Yu Yang 已提交
292 293


294 295 296
@deprecated(
    since="2.0.0",
    update_to="paddle.text.datasets.Movielens",
297
    level=1,
298
    reason="Please use new dataset API which supports paddle.io.DataLoader")
299
def fetch():
300
    paddle.dataset.common.download(URL, "movielens", MD5)
R
root 已提交
301 302


Y
Yu Yang 已提交
303 304
if __name__ == '__main__':
    unittest()