Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
d9b2e7d0
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d9b2e7d0
编写于
3月 01, 2017
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Complete recommendation demo in API.v2
上级
4fd45928
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
80 addition
and
8 deletion
+80
-8
demo/recommendation/api_train_v2.py
demo/recommendation/api_train_v2.py
+62
-7
python/paddle/v2/dataset/movielens.py
python/paddle/v2/dataset/movielens.py
+18
-1
未找到文件。
demo/recommendation/api_train_v2.py
浏览文件 @
d9b2e7d0
...
...
@@ -2,6 +2,7 @@ import paddle.v2 as paddle
def
main
():
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
3
)
movie_title_dict
=
paddle
.
dataset
.
movielens
.
get_movie_title_dict
()
uid
=
paddle
.
layer
.
data
(
name
=
'user_id'
,
...
...
@@ -17,10 +18,17 @@ def main():
name
=
'age_id'
,
type
=
paddle
.
data_type
.
integer_value
(
len
(
paddle
.
dataset
.
movielens
.
age_table
)))
usr_age_emb
=
paddle
.
embedding
(
input
=
usr_age_id
,
size
=
16
)
usr_age_emb
=
paddle
.
layer
.
embedding
(
input
=
usr_age_id
,
size
=
16
)
usr_combined_features
=
paddle
.
fc
(
input
=
[
usr_emb
,
usr_gender_emb
,
usr_age_emb
],
usr_job_id
=
paddle
.
layer
.
data
(
name
=
'job_id'
,
type
=
paddle
.
data_type
.
integer_value
(
paddle
.
dataset
.
movielens
.
max_job_id
(
)
+
1
))
usr_job_emb
=
paddle
.
layer
.
embedding
(
input
=
usr_job_id
,
size
=
16
)
usr_combined_features
=
paddle
.
layer
.
fc
(
input
=
[
usr_emb
,
usr_gender_emb
,
usr_age_emb
,
usr_job_emb
],
size
=
200
,
act
=
paddle
.
activation
.
Tanh
())
...
...
@@ -30,12 +38,59 @@ def main():
paddle
.
dataset
.
movielens
.
max_movie_id
()
+
1
))
mov_emb
=
paddle
.
layer
.
embedding
(
input
=
mov_id
,
size
=
32
)
mov_categories
=
paddle
.
layer
.
data
(
name
=
'category_id'
,
type
=
paddle
.
data_type
.
sparse_binary_vector
(
len
(
paddle
.
dataset
.
movielens
.
movie_categories
())))
mov_categories_hidden
=
paddle
.
layer
.
fc
(
input
=
mov_categories
,
size
=
32
)
mov_title_id
=
paddle
.
layer
.
data
(
name
=
'movie_title'
,
type
=
paddle
.
data_type
.
integer_value
(
len
(
movie_title_dict
)))
mov_title_emb
=
paddle
.
embedding
(
input
=
mov_title_id
,
size
=
32
)
with
paddle
.
layer
.
mixed
()
as
mixed
:
pass
type
=
paddle
.
data_type
.
integer_value_sequence
(
len
(
movie_title_dict
)))
mov_title_emb
=
paddle
.
layer
.
embedding
(
input
=
mov_title_id
,
size
=
32
)
mov_title_conv
=
paddle
.
networks
.
sequence_conv_pool
(
input
=
mov_title_emb
,
hidden_size
=
32
,
context_len
=
3
)
mov_combined_features
=
paddle
.
layer
.
fc
(
input
=
[
mov_emb
,
mov_categories_hidden
,
mov_title_conv
],
size
=
200
,
act
=
paddle
.
activation
.
Tanh
())
inference
=
paddle
.
layer
.
cos_sim
(
a
=
usr_combined_features
,
b
=
mov_combined_features
,
size
=
1
,
scale
=
5
)
cost
=
paddle
.
layer
.
regression_cost
(
input
=
inference
,
label
=
paddle
.
layer
.
data
(
name
=
'score'
,
type
=
paddle
.
data_type
.
dense_vector
(
1
)))
parameters
=
paddle
.
parameters
.
create
(
cost
)
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
cost
,
parameters
=
parameters
,
update_equation
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
1e-4
))
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
100
==
0
:
print
"Pass %d Batch %d Cost %.2f"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
)
trainer
.
train
(
reader
=
paddle
.
reader
.
batched
(
paddle
.
dataset
.
movielens
.
train
(),
batch_size
=
256
),
event_handler
=
event_handler
,
reader_dict
=
{
'user_id'
:
0
,
'gender_id'
:
1
,
'age_id'
:
2
,
'job_id'
:
3
,
'movie_id'
:
4
,
'category_id'
:
5
,
'movie_title'
:
6
,
'score'
:
7
})
if
__name__
==
'__main__'
:
...
...
python/paddle/v2/dataset/movielens.py
浏览文件 @
d9b2e7d0
...
...
@@ -6,7 +6,7 @@ import functools
__all__
=
[
'train'
,
'test'
,
'get_movie_title_dict'
,
'max_movie_id'
,
'max_user_id'
,
'age_table'
'age_table'
,
'movie_categories'
,
'max_job_id'
]
age_table
=
[
1
,
18
,
25
,
35
,
45
,
50
,
56
]
...
...
@@ -135,6 +135,23 @@ def max_user_id():
return
reduce
(
__max_index_info__
,
USER_INFO
.
viewvalues
()).
index
def
__max_job_id_impl__
(
a
,
b
):
if
a
.
job_id
>
b
.
job_id
:
return
a
else
:
return
b
def
max_job_id
():
__initialize_meta_info__
()
return
reduce
(
__max_job_id_impl__
,
USER_INFO
.
viewvalues
()).
job_id
def
movie_categories
():
__initialize_meta_info__
()
return
CATEGORIES_DICT
def
unittest
():
for
train_count
,
_
in
enumerate
(
train
()()):
pass
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录