reader.py 80.8 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from . import core
16
import sys
17
import numpy as np
S
sneaxiy 已提交
18
import threading
19
import paddle
20
import time
N
niuliling123 已提交
21
import copy
22

23 24 25 26 27 28 29 30 31 32 33
from .framework import (
    Program,
    Variable,
    program_guard,
    default_main_program,
    default_startup_program,
    _non_static_mode,
    cpu_places,
    _current_expected_place,
    _in_eager_without_dygraph_check,
)
S
sneaxiy 已提交
34
from .executor import global_scope
35
from .data_feeder import DataFeeder, BatchedTensorProvider
36 37 38 39 40 41 42
from .multiprocess_utils import (
    multiprocess_queue_set,
    CleanupFuncRegistrar,
    _cleanup_mmap,
    _cleanup,
    _set_SIGCHLD_handler,
)
43
from .dataloader import BatchSampler, Dataset, IterableDataset, Subset
44 45 46 47 48 49
from .dataloader.dataloader_iter import (
    _DataLoaderIterSingleProcess,
    _DataLoaderIterMultiProcess,
    _DatasetKind,
    default_collate_fn,
)
50
from .dataloader.batch_sampler import _InfiniteIterableSampler
51 52 53 54 55
from .layers.io import (
    monkey_patch_reader_methods,
    _copy_reader_var_,
    double_buffer,
)
S
sneaxiy 已提交
56
from .unique_name import UniqueNameGenerator
57
from .framework import _get_paddle_place, _get_paddle_place_list
58
from paddle.fluid.framework import _set_expected_place, _current_expected_place
59
import logging
60
import warnings
S
sneaxiy 已提交
61

62
### Dygraph DataLoader configs ###
63
import os
64 65
import multiprocessing
import signal
66

67
# NOTE: queue has a different name in python2 and python3
T
tianshuo78520a 已提交
68
import queue
69

70 71 72
# NOTE: [ avoid hanging & failed quickly ] These value is used in getting data from another process
QUEUE_GET_TIMEOUT = 60

73
__all__ = ['PyReader', 'DataLoader', 'default_collate_fn']
Z
Zeng Jinle 已提交
74 75

data_loader_unique_name_generator = UniqueNameGenerator()
S
sneaxiy 已提交
76

77
KEEP_DATA_LOADER_ORDER = True
78
USE_PINNED_MEMORY = None
79 80 81 82 83 84 85 86 87 88
# AutoTune Flags
USE_AUTOTUNE = False
TUNING_STEPS = 500


def set_autotune_config(use_autotune, tuning_steps=500):
    global USE_AUTOTUNE
    USE_AUTOTUNE = use_autotune
    global TUNING_STEPS
    TUNING_STEPS = tuning_steps
89 90 91 92 93 94 95 96 97 98


def keep_data_loader_order(*args):
    global KEEP_DATA_LOADER_ORDER
    if len(args) == 0:
        return KEEP_DATA_LOADER_ORDER
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        KEEP_DATA_LOADER_ORDER = args[0]

S
sneaxiy 已提交
99

100 101 102 103 104 105 106 107 108
def use_pinned_memory(*args):
    global USE_PINNED_MEMORY
    if len(args) == 0:
        return USE_PINNED_MEMORY
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        USE_PINNED_MEMORY = args[0]


S
sneaxiy 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
def _convert_places(places):
    if not isinstance(places, (list, tuple)):
        places = [places]

    ret = []
    for p in places:
        if not isinstance(p, core.Place):
            tmp = core.Place()
            tmp.set_place(p)
            p = tmp

        ret.append(p)
    return ret


124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
# NOTE(chenweihang): _reader_process_loop must be top level method to be pickled
def _reader_process_loop(batch_reader, data_queue):
    try:
        # set signal handler
        core._set_process_signal_handler()

        # NOTE: [ mmap files clear ] When the child process exits unexpectedly,
        # some shared memory objects may have been applied for but have not yet
        # been put into the inter-process Queue. This part of the object needs
        # to be cleaned up when the process ends.
        CleanupFuncRegistrar.register(_cleanup_mmap)

        for batch in batch_reader():
            tensor_list = core._convert_to_tensor_list(batch)
            data_queue.put(tensor_list)
            core._remove_tensor_list_mmap_fds(tensor_list)
        data_queue.put(None)
    except KeyboardInterrupt:
        # NOTE: Main process will raise KeyboardInterrupt anyways, ignore it in child process
        pass
    except:
145
        raise
146 147


Z
Zeng Jinle 已提交
148 149 150
class DataLoaderBase(object):
    def __init__(self):
        self._places = None
S
sneaxiy 已提交
151

Z
Zeng Jinle 已提交
152 153
    def __call__(self):
        return self
S
sneaxiy 已提交
154

Z
Zeng Jinle 已提交
155 156
    def next(self):
        '''
157
        Get the next item in the DataLoader object. This method
Z
Zeng Jinle 已提交
158 159 160 161 162 163 164 165 166 167 168 169
        should not be called by users directly. It is used for
        implementing iterator protocol of Python 2.x inside
        PaddlePaddle framework.
        '''
        return self.__next__()

    def __iter__(self):
        raise NotImplementedError()

    def __next__(self):
        raise NotImplementedError()

170 171 172
    @classmethod
    def _check_input_array(cls, item):
        arr = np.asarray(item)
173
        if arr.dtype == np.object_:
174 175 176 177 178
            raise TypeError(
                "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                "this means the input data contains nested lists with different lengths. "
                "\n\t* Check the reader function passed to 'decorate_batch_generator'"
                " to locate the data causes this issue.\n\t* Please consider using "
179 180
                "'fluid.create_lod_tensor' to convert it to a LoD-Tensor."
            )
181 182
        return arr

Z
Zeng Jinle 已提交
183

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
class AuToTune(object):
    def __init__(self, loader):
        self.loader = loader
        self.max_num_worker = multiprocessing.cpu_count() / 2

    def __call__(self):
        # use default loader
        if (not USE_AUTOTUNE) or (not self.need_autotune()):
            return self.loader.num_workers

        # get autotune loader
        auto_tune_loader = self.get_autotune_loader()
        if auto_tune_loader is None:
            return self.loader.num_workers

        # pick the best num_workers
        auto_tune_start = time.time()
        logging.debug("========= DataLoader Auto Tune =========")
202 203 204
        logging.debug(
            "User config for DataLoader: " + str(self.loader.num_workers)
        )
205 206
        best_num_workers = 0
        min_cost = float("inf")
207 208 209
        logging.debug(
            "Tuning Range for num_workers: 0 ~ " + str(self.max_num_worker)
        )
210 211 212 213 214 215 216 217
        num_workers = 0
        while num_workers < self.max_num_worker:
            auto_tune_loader.num_workers = num_workers
            avg_cost = self.evaluate_reader_cost(auto_tune_loader)
            if min_cost * 0.75 > avg_cost:
                min_cost = avg_cost
                best_num_workers = num_workers
            else:
218 219 220 221 222 223
                update_num = self.is_best(
                    auto_tune_loader,
                    best_num_workers,
                    min_cost,
                    self.max_num_worker,
                )
224 225 226 227
                if update_num == best_num_workers:
                    break
                else:
                    best_num_workers = update_num
228 229 230 231 232 233
            logging.debug(
                "num_workers: "
                + str(num_workers)
                + " avg_cost: "
                + str(avg_cost)
            )
234
            num_workers += 2
235 236 237 238 239 240 241 242
        logging.info(
            "auto_tune dataLoader best_num_workers: " + str(best_num_workers)
        )
        logging.debug(
            "AutoTuning Cost for DataLoader: "
            + str(time.time() - auto_tune_start)
            + ' seconds'
        )
243 244 245 246 247

        # tune the default loader's num_workers
        return best_num_workers

    def need_autotune(self):
248
        if sys.platform == 'darwin' or sys.platform == 'win32':
249 250 251 252 253 254 255 256 257 258
            return False
        else:
            return True

    def get_sub_dataset(self, dataset, batch_size):
        num_samples = min(batch_size * TUNING_STEPS, len(dataset))
        sub_dataset = Subset(dataset, indices=list(range(num_samples)))
        return sub_dataset

    def get_autotune_loader(self):
N
niuliling123 已提交
259
        loader = copy.copy(self.loader)
260
        batch_size = self.loader.batch_sampler.batch_size
261 262 263
        if isinstance(
            self.loader.batch_sampler, paddle.io.DistributedBatchSampler
        ):
264 265 266 267 268 269 270 271
            dataset = self.loader.batch_sampler.dataset
            sub_dataset = self.get_sub_dataset(dataset, batch_size)
            loader.batch_sampler = paddle.io.DistributedBatchSampler(
                dataset=sub_dataset,
                batch_size=batch_size,
                num_replicas=self.loader.batch_sampler.nranks,
                rank=self.loader.batch_sampler.local_rank,
                shuffle=self.loader.batch_sampler.shuffle,
272 273
                drop_last=self.loader.batch_sampler.drop_last,
            )
274 275 276 277 278 279
        elif isinstance(self.loader.batch_sampler, paddle.io.BatchSampler):
            dataset = self.loader.batch_sampler.sampler.data_source
            sub_dataset = self.get_sub_dataset(dataset, batch_size)
            loader.batch_sampler = paddle.io.BatchSampler(
                dataset=sub_dataset,
                batch_size=batch_size,
280 281
                drop_last=self.loader.batch_sampler.drop_last,
            )
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
        else:
            loader = None
        return loader

    def evaluate_reader_cost(self, reader):
        costs = []
        avg_cost = 0
        start = time.time()
        for i, data in enumerate(reader):
            costs.append(time.time() - start)
            start = time.time()
        if len(costs) > 2:
            avg_cost = sum(costs[2:]) / len(costs[2:])
        else:
            avg_cost = sum(costs[0:]) / len(costs[0:])
        return avg_cost

    def is_best(self, reader, best_workers, best_time, num_work_boundary):
        step = 0
        num_workers = best_workers + 1
        boundary = 1
        while num_workers < num_work_boundary and step < 5:
            self.loader.num_workers = num_workers
            time = self.evaluate_reader_cost(reader)
306 307 308 309 310 311
            logging.debug(
                "for back num_workers: "
                + str(num_workers)
                + " avg_cost: "
                + str(time)
            )
312
            step += 1
313
            if time < best_time * 0.70 * boundary:
314 315 316 317 318 319 320
                return num_workers
            else:
                num_workers += 1
            boundary *= 0.80
        return best_workers


Z
Zeng Jinle 已提交
321
class DataLoader(object):
322 323 324 325 326 327 328 329
    """
    DataLoader prodives an iterator which iterates given dataset
    once by the batch_sampler.

    DataLoader supports single-process and multi-prcess data loading,
    multi-process workers will be used to load data asynchronously if
    :attr:`num_workers` is set as a positive number.

K
Kaipeng Deng 已提交
330
    DataLoader supports map-style dataset and iterable-style dataset.
331

K
Kaipeng Deng 已提交
332 333 334 335 336 337 338
    For map-style datast(can get a sample from dataset with a given
    index), please see :code:`paddle.io.Dataset`.

    For iterable-style datast(get samples from dataset iteratively,
    like a Python iterator), please see :code:`paddle.io.IterableDataset`.

    For :code:`batch_sampler` please see :code:`paddle.io.BatchSampler`
339

340 341 342 343 344 345
    .. note::
        GPU tensor operation is not supported in subprocess currently,
        please don't use GPU tensor operations in pipeline which will
        be performed in subprocess, such as dataset transforms, collte_fn,
        etc. Numpy array and CPU tensor operation is supported.

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
    **Disable automatic batching**

    In certain cases such as some NLP tasks, instead of automatic batching,
    handling batching manually in dataset is needed by users. For these
    cases, automatic batching is disabled if both :attr:`batch_size` and
    :attr:`batch_sampler` is set as None, each data got from :attr:`dataset`
    should be batched data and will be processed with function define by
    :attr:`collate_fn` or :attr:`default_collate_fn`.


    .. note::
        When automatic batching is disabled, :attr:`default_collate_fn` will
        do nothing to data from dataset.


361
    Args:
362
        dataset(Dataset): the dataset to load data from, should be an
363 364
            instance of subclass of :code:`paddle.io.Dataset` or
            :code:`paddle.io.IterableDataset`.
365
        feed_list (list(Tensor)|tuple(Tensor), optional): feed Tensor list.
366
            The Tensors should be created by :code:`paddle.static.data()`.
367 368
            :attr:`feed_list` must be set if :attr:`return_list` is
            False. Default None.
369
        places(list(Place)|tuple(Place)|list(str), optional): a list of Place,
370
            to put data onto, :attr:`places` can be None, if
371
            :attr:`places` is None, default place(CPUPlace or CUDAPlace(0))
372 373 374
            will be used. Default None. If ``places`` is list of string,
            the string in the list can be ``cpu``, ``gpu:x`` and ``gpu_pinned``,
            where ``x`` is the index of the GPUs.
375
        return_list (bool, optional): whether the return value on each device is
376
            presented as a list. If :attr:`return_list=False`, the return
K
Kaipeng Deng 已提交
377
            value on each device would be a dict of str -> Tensor, where
378
            the key of the dict is the name of each fed Tensors. If
379
            :attr:`return_list=True`, the return value on each device would
K
Kaipeng Deng 已提交
380
            be a list(Tensor). :attr:`return_list` can only be True
381
            in dynamic graph mode. Default True.
382
        batch_sampler(BatchSampler, optional): an instance of `paddle.io.BatchSampler`
383 384
            to generate batch indices to draw samples from :attr:`dataset`
            and combine a batch. Default None.
385
        batch_size(int|None, optional): sample number in a mini-batch, a substitution
386 387 388 389
            parameter for :attr:`batch_sampler`, if :attr:`batch_sampler`
            is not set, a default `paddle.io.BatchSampler` will be used
            and initialize by :attr:`batch_size`, :attr:`shuffle` and
            :attr:`drop_last`. Default 1.
390
        shuffle(bool, optional): whther to shuffle indices order before genrate
391 392
            batch indices, a substitution parameter for :attr:`batch_sampler`
            see :attr:`batch_size`. Default False.
393
        drop_last(bool, optional): whether drop the last incomplete batch dataset size
394 395
            is not divisible by the batch size, a substitution parameter
            for :attr:`batch_sampler`, see :attr:`batch_size`. Default False
396
        collate_fn(callable, optional): function to generate mini-batch data by merging
397 398
            the sample list, None for only stack each fields of sample in axis
            0(same as :attr::`np.stack(..., axis=0)`). Default None
399
        num_workers(int, optional): the number of subprocess to load data, 0 for no
400
            subprocess used and loading data in main process. Default 0
401
        use_buffer_reader (bool, optional): whether to use bufferred reader.
402
            If use_buffer_reader=True, the DataLoader would prefetch
403
            batch data asynchronously, so it would speed up data feeding
404 405
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. Default True.
406 407 408
        prefetch_factor (int, optional): Number of batch data the DataLoader would prefetch
            if use_buffer_reader=True. Default 2.
        use_shared_memory (bool, optional): whether to use shared memory to speed up
409 410 411 412 413
            putting data into inter-process queue, set :attr:`use_shared_memory`
            as True only when the shared memory space on your machine(e.g.
            space of '/dev/shm' on Linux operating sysytem) is large enough.
            Shared memory will only be enabled in multi-process mode(num_workers
            > 0). Default True.
414
        timeout(int, optional): the timeout value for getting data form output queue
415
            of subprocesses. Default 0.
416
        worker_init_fn(callable, optional): init function which will be called with
417 418 419 420
            worker id on each subproces starting if not set as None. Default
            None.

    Returns:
421
        DataLoader: an iterable object for data iterating, each elemnet of the generated data is a Tensor.
422 423

    Examples:
424

425 426 427
        .. code-block:: python

            import numpy as np
428 429

            import paddle
K
Kaipeng Deng 已提交
430 431
            import paddle.nn as nn
            import paddle.nn.functional as F
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
            from paddle.io import Dataset, BatchSampler, DataLoader

            BATCH_NUM = 20
            BATCH_SIZE = 16
            EPOCH_NUM = 4

            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples

                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label

                def __len__(self):
                    return self.num_samples

454 455
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)

K
Kaipeng Deng 已提交
456
            class SimpleNet(nn.Layer):
457 458
                def __init__(self):
                    super(SimpleNet, self).__init__()
K
Kaipeng Deng 已提交
459
                    self.fc = nn.Linear(IMAGE_SIZE, CLASS_NUM)
460 461 462 463

                def forward(self, image, label=None):
                    return self.fc(image)

K
Kaipeng Deng 已提交
464 465 466
            simple_net = SimpleNet()
            opt = paddle.optimizer.SGD(learning_rate=1e-3,
                                      parameters=simple_net.parameters())
467 468

            loader = DataLoader(dataset,
K
Kaipeng Deng 已提交
469
                                batch_size=BATCH_SIZE,
470 471 472 473 474
                                shuffle=True,
                                drop_last=True,
                                num_workers=2)

            for e in range(EPOCH_NUM):
K
Kaipeng Deng 已提交
475 476 477 478 479 480 481 482
                for i, (image, label) in enumerate(loader()):
                    out = simple_net(image)
                    loss = F.cross_entropy(out, label)
                    avg_loss = paddle.mean(loss)
                    avg_loss.backward()
                    opt.minimize(avg_loss)
                    simple_net.clear_gradients()
                    print("Epoch {} batch {}: loss = {}".format(e, i, np.mean(loss.numpy())))
483 484


485 486 487 488
    .. note::
        For reading iterable dataset with multiprocess Dataloader,
        please see :code:`paddle.io.IterableDataset`

489 490
    """

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
    def __init__(
        self,
        dataset,
        feed_list=None,
        places=None,
        return_list=True,
        batch_sampler=None,
        batch_size=1,
        shuffle=False,
        drop_last=False,
        collate_fn=None,
        num_workers=0,
        use_buffer_reader=True,
        prefetch_factor=2,
        use_shared_memory=True,
        timeout=0,
        worker_init_fn=None,
        persistent_workers=False,
    ):
510 511 512
        self.return_list = return_list
        self.collate_fn = collate_fn
        self.use_buffer_reader = use_buffer_reader
513
        self.prefetch_factor = prefetch_factor
514 515 516 517
        self.worker_init_fn = worker_init_fn

        self.dataset = dataset

J
Jiabin Yang 已提交
518
        if not return_list and not _non_static_mode():
519 520 521
            assert (
                feed_list is not None
            ), "feed_list should be set when return_list=False"
522 523
        self.feed_list = feed_list

524 525
        if places is None:
            places = _current_expected_place()
526 527 528 529
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
530 531 532
        self.places = _convert_places(places)

        assert num_workers >= 0, "num_workers should be a non-negative value"
533 534 535
        if num_workers > 0 and (
            sys.platform == 'darwin' or sys.platform == 'win32'
        ):
536
            warnings.warn(
537 538 539
                "DataLoader with multi-process mode is not supported on MacOs and Windows currently."
                " Please use signle-process mode with num_workers = 0 instead"
            )
540 541 542
            num_workers = 0
        self.num_workers = num_workers

543 544
        assert prefetch_factor > 0, "prefetch_factor should be a positive value"

545 546 547 548 549 550 551
        self.use_shared_memory = use_shared_memory
        if use_shared_memory and num_workers == 0:
            self.use_shared_memory = False

        assert timeout >= 0, "timeout should be a non-negative value"
        self.timeout = timeout

552 553 554 555
        if isinstance(dataset, IterableDataset):
            self.dataset_kind = _DatasetKind.ITER
            if shuffle:
                raise ValueError(
556 557 558 559
                    "IterableDataset not support shuffle, but got shuffle={}".format(
                        shuffle
                    )
                )
560 561
            if batch_sampler is not None:
                raise ValueError(
562 563
                    "IterableDataset expect unspecified batch_sampler"
                )
564 565 566
        else:
            self.dataset_kind = _DatasetKind.MAP

567
        if batch_sampler is not None:
568 569
            assert batch_size == 1 and not shuffle and not drop_last, (
                "batch_size/shuffle/drop_last should not be set when "
570
                "batch_sampler is given"
571
            )
572
            self.batch_sampler = batch_sampler
573 574 575 576
            self.batch_size = None
        elif batch_size is None:
            self.batch_sampler = None
            self.batch_size = None
577
        else:
578 579
            assert batch_size > 0, (
                "batch_size should be None or a positive value when "
580
                "batch_sampler is not given"
581
            )
582
            self.batch_size = batch_size
583
            if isinstance(dataset, IterableDataset):
584
                self.batch_sampler = _InfiniteIterableSampler(
585 586
                    dataset, batch_size
                )
587
            else:
588 589 590 591 592 593
                self.batch_sampler = BatchSampler(
                    dataset=dataset,
                    batch_size=batch_size,
                    shuffle=shuffle,
                    drop_last=drop_last,
                )
594

595
        self.drop_last = drop_last
596 597
        self.auto_collate_batch = self.batch_sampler is not None

598
        self.pin_memory = False
J
Jiabin Yang 已提交
599
        if _non_static_mode():
600 601 602
            self.pin_memory = (
                True if use_pinned_memory() is None else use_pinned_memory()
            )
603

K
Kaipeng Deng 已提交
604 605
        self._persistent_workers = persistent_workers
        self._iterator = None
606
        self.num_workers = AuToTune(self).__call__()
K
Kaipeng Deng 已提交
607

608
    def __len__(self):
609 610 611
        if self.dataset_kind == _DatasetKind.ITER:
            raise ValueError("length of IterableDataset not supported")
        else:
612
            if self.auto_collate_batch:
613
                return len(self.batch_sampler)
614 615
            else:
                return len(self.dataset)
616 617 618 619

    def __iter__(self):
        if self.num_workers == 0:
            return _DataLoaderIterSingleProcess(self)
K
Kaipeng Deng 已提交
620 621 622 623 624 625
        elif self._persistent_workers:
            if self._iterator is None:
                self._iterator = _DataLoaderIterMultiProcess(self)
            else:
                self._iterator._reset()
            return self._iterator
626 627 628 629 630 631
        else:
            return _DataLoaderIterMultiProcess(self)

    def __call__(self):
        return self.__iter__()

Z
Zeng Jinle 已提交
632
    @staticmethod
633 634 635 636 637 638 639 640 641
    def from_generator(
        feed_list=None,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=False,
        use_multiprocess=False,
        drop_last=True,
    ):
Z
Zeng Jinle 已提交
642
        """
K
Kaipeng Deng 已提交
643 644 645 646
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`paddle.io.DataLoader` which supports multi-processes acceleration.

647 648 649
        .. note::
          **The framework ensures that the data loading order of DataLoader is exactly the same as the user-defined data source.**

650
        Create a DataLoader object for loading data from Python generator.
Z
Zeng Jinle 已提交
651 652 653 654
        Data would be prefetched using Python thread and be pushed
        into a queue asynchronously.

        The created DataLoader object provides 3 methods to set the data source
655
        :code:`set_sample_generator` , :code:`set_sample_list_generator` and
Z
Zeng Jinle 已提交
656 657
        :code:`set_batch_generator` . Please see the following example codes
        to know their usages.
658

Z
Zeng Jinle 已提交
659 660 661
        If iterable = True, the created DataLoader object is a Python generator
        object, which is iterable using for-range loop.

662
        If iterable = False, the created DataLoader object provides
Z
Zeng Jinle 已提交
663
        :code:`start()` and :code:`reset()` method to control the data reading
664
        process.
Z
Zeng Jinle 已提交
665

666
        Args:
667 668
            feed_list (list(Tensor)|tuple(Tensor)): feed Tensor list.
                The Tensors should be created by :code:`fluid.data()`.
Z
Zeng Jinle 已提交
669
            capacity (int): capacity of the queue maintained in DataLoader.
670 671 672 673 674
                The unit is batch number. Set larger capacity if your reader
                is fast.
            use_double_buffer (bool): whether to use double_buffer_reader.
                If use_double_buffer=True, the DataLoader would prefetch next
                batch data asynchronously, so it would speed up data feeding
Z
Zeng Jinle 已提交
675
                and occupies a little more CPU or GPU memory, i.e., the memory
676 677 678 679 680 681 682
                of one batch input data.
            iterable (bool): whether the created DataLoader is iterable.
            return_list (bool): whether the return value on each device is
                presented as a list. It is only valid when iterable=True.
                If return_list=False, the return value on each device would
                be a dict of str -> LoDTensor, where the key of the dict is
                the name of each fed Tensors. If return_list=True, the
Z
Zeng Jinle 已提交
683 684
                return value on each device would be a list(LoDTensor). It is
                recommended to use return_list=False in static graph mode and
685
                use return_list=True in dygraph mode.
686 687 688 689 690
            use_multiprocess (bool): whether to use multi-process to speed up
                the data loading process in dygraph. Note: this parameter only
                can be used in the dygraph mode. In the static graph mode,
                whether this parameter is set or not has no effect.
                The Default value is False.
691
            drop_last (bool): whether to drop the last batches whose number is
692
                less than the CPU core/GPU card number. The default value is
693
                True. In training phase, users should not set drop_last=False,
694
                because all CPU cores/GPU cards must read data from DataLoader.
695 696
                In inference phase, users can set drop_last=False, so that the
                last batches whose number is less than the CPU core/GPU card
697
                number can be tested.
Z
Zeng Jinle 已提交
698 699 700 701

        Returns:
            loader (DataLoader): the created DataLoader object.

702
        Examples 1:
703

Z
Zeng Jinle 已提交
704
            .. code-block:: python
S
sneaxiy 已提交
705

706 707 708
                '''
                Example in static graph mode
                '''
Z
Zeng Jinle 已提交
709
                import numpy as np
710

711 712 713 714 715
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F


716
                BATCH_NUM = 10
Z
Zeng Jinle 已提交
717 718 719 720 721 722 723 724
                BATCH_SIZE = 16
                EPOCH_NUM = 4

                CLASS_NUM = 10

                ITERABLE = True # whether the created DataLoader object is iterable
                USE_GPU = False # whether to use GPU

725
                DATA_FORMAT = 'batch_generator' # data format of data source user provides
Z
Zeng Jinle 已提交
726

727 728
                paddle.enable_static()

Z
Zeng Jinle 已提交
729
                def simple_net(image, label):
730 731 732 733
                    fc_tmp = static.nn.fc(image, size=CLASS_NUM)
                    cross_entropy = F.softmax_with_cross_entropy(image, label)
                    loss = paddle.mean(cross_entropy)
                    sgd = paddle.optimizer.SGD(learning_rate=1e-3)
Z
Zeng Jinle 已提交
734 735 736 737 738 739 740 741 742 743
                    sgd.minimize(loss)
                    return loss

                def get_random_images_and_labels(image_shape, label_shape):
                    image = np.random.random(size=image_shape).astype('float32')
                    label = np.random.random(size=label_shape).astype('int64')
                    return image, label

                # If the data generator yields one sample each time,
                # use DataLoader.set_sample_generator to set the data source.
744
                def sample_generator_creator():
Z
Zeng Jinle 已提交
745 746 747 748 749 750 751 752 753 754 755
                    def __reader__():
                        for _ in range(BATCH_NUM * BATCH_SIZE):
                            image, label = get_random_images_and_labels([784], [1])
                            yield image, label

                    return __reader__

                # If the data generator yield list of samples each time,
                # use DataLoader.set_sample_list_generator to set the data source.
                def sample_list_generator_creator():
                    def __reader__():
756
                        for _ in range(BATCH_NUM):
Z
Zeng Jinle 已提交
757 758 759 760 761 762 763
                            sample_list = []
                            for _ in range(BATCH_SIZE):
                                image, label = get_random_images_and_labels([784], [1])
                                sample_list.append([image, label])

                            yield sample_list

764
                    return __reader__
Z
Zeng Jinle 已提交
765

766
                # If the data generator yields a batch each time,
Z
Zeng Jinle 已提交
767 768 769 770
                # use DataLoader.set_batch_generator to set the data source.
                def batch_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM):
771
                            batch_image, batch_label = get_random_images_and_labels([BATCH_SIZE, 784], [BATCH_SIZE, 1])
Z
Zeng Jinle 已提交
772
                            yield batch_image, batch_label
H
Huihuang Zheng 已提交
773

Z
Zeng Jinle 已提交
774
                    return __reader__
775

776
                # If DataLoader is iterable, use for loop to train the network
Z
Zeng Jinle 已提交
777 778 779 780
                def train_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        for data in loader():
                            exe.run(prog, feed=data, fetch_list=[loss])
781

782
                # If DataLoader is not iterable, use start() and reset() method to control the process
Z
Zeng Jinle 已提交
783 784 785 786 787 788
                def train_non_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        loader.start() # call DataLoader.start() before each epoch starts
                        try:
                            while True:
                                exe.run(prog, fetch_list=[loss])
789
                        except paddle.core.EOFException:
790
                            loader.reset() # call DataLoader.reset() after catching EOFException
Z
Zeng Jinle 已提交
791 792 793 794 795 796 797 798 799 800

                def set_data_source(loader, places):
                    if DATA_FORMAT == 'sample_generator':
                        loader.set_sample_generator(sample_generator_creator(), batch_size=BATCH_SIZE, drop_last=True, places=places)
                    elif DATA_FORMAT == 'sample_list_generator':
                        loader.set_sample_list_generator(sample_list_generator_creator(), places=places)
                    elif DATA_FORMAT == 'batch_generator':
                        loader.set_batch_generator(batch_generator_creator(), places=places)
                    else:
                        raise ValueError('Unsupported data format')
801

802 803
                image = static.data(name='image', shape=[None, 784], dtype='float32')
                label = static.data(name='label', shape=[None, 1], dtype='int64')
804

805
                # Define DataLoader
806
                loader = paddle.io.DataLoader.from_generator(feed_list=[image, label], capacity=16, iterable=ITERABLE)
807

Z
Zeng Jinle 已提交
808 809
                # Define network
                loss = simple_net(image, label)
S
sneaxiy 已提交
810

Z
Zeng Jinle 已提交
811 812
                # Set data source of DataLoader
                #
813 814 815 816
                # If DataLoader is iterable, places must be given and the number of places must be the same with device number.
                #  - If you are using GPU, call `paddle.static.cuda_places()` to get all GPU places.
                #  - If you are using CPU, call `paddle.static.cpu_places()` to get all CPU places.
                #
Z
Zeng Jinle 已提交
817
                # If DataLoader is not iterable, places can be None.
818
                places = static.cuda_places() if USE_GPU else static.cpu_places()
Z
Zeng Jinle 已提交
819
                set_data_source(loader, places)
S
sneaxiy 已提交
820

821 822
                exe = static.Executor(places[0])
                exe.run(static.default_startup_program())
H
Huihuang Zheng 已提交
823

824
                prog = static.CompiledProgram(static.default_main_program()).with_data_parallel(loss_name=loss.name)
825

Z
Zeng Jinle 已提交
826 827 828 829 830 831
                if loader.iterable:
                    train_iterable(exe, prog, loss, loader)
                else:
                    train_non_iterable(exe, prog, loss, loader)


832 833 834 835
        Examples 2:

            .. code-block:: python

Z
Zeng Jinle 已提交
836
                '''
837
                Example in dynamic graph mode.
Z
Zeng Jinle 已提交
838
                '''
839
                import numpy as np
840

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
                import paddle.distributed as dist

                BATCH_SIZE = 16
                BATCH_NUM = 4
                EPOCH_NUM = 4

                IMAGE_SIZE = 784
                CLASS_NUM = 10

                USE_GPU = False # whether to use GPU

                def _get_random_images_and_labels(image_shape, label_shape):
                        image = np.random.random(size=image_shape).astype('float32')
                        label = np.random.random(size=label_shape).astype('int64')
                        return image, label

                def __reader__():
                        for _ in range(BATCH_NUM):
                            batch_image, batch_label = _get_random_images_and_labels(
                                [BATCH_SIZE, IMAGE_SIZE], [BATCH_SIZE, CLASS_NUM])
                            yield batch_image, batch_label

                def random_batch_reader():
                    return __reader__

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)

                    @paddle.jit.to_static
                    def forward(self, x):
                        return self._linear(x)

                # set device
                paddle.set_device('gpu' if USE_GPU else 'cpu')

                # create network
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)
                loss_fn = nn.CrossEntropyLoss()
                adam = opt.Adam(learning_rate=0.001, parameters=dp_layer.parameters())

                # create data loader
                loader = paddle.io.DataLoader.from_generator(capacity=5)
                loader.set_batch_generator(random_batch_reader())

                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)

                        loss.backward()

                        adam.step()
                        adam.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

        Examples 3:
904 905 906

            .. code-block:: python

907 908 909 910 911
                '''
                Example of `drop_last` using in static graph multi-cards mode
                '''
                import paddle
                import paddle.static as static
912 913 914
                import numpy as np
                import os

915
                # We use 2 CPU cores to run inference network
916 917
                os.environ['CPU_NUM'] = '2'

918 919
                paddle.enable_static()

920 921
                # The data source has only 3 batches, which can not be
                # divided evenly to each CPU core
922
                def batch_generator():
923
                    for i in range(3):
924
                        yield np.array([i+1]).astype('float32'),
925

926
                x = static.data(name='x', shape=[None], dtype='float32')
927 928
                y = x * x

929
                def run_inference(drop_last):
930
                    loader = paddle.io.DataLoader.from_generator(feed_list=[x],
931
                            capacity=8, drop_last=drop_last)
932
                    loader.set_batch_generator(batch_generator, static.cpu_places())
933

934 935
                    exe = static.Executor(paddle.CPUPlace())
                    prog = static.CompiledProgram(static.default_main_program())
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
                    prog = prog.with_data_parallel()

                    result = []
                    for data in loader():
                        each_ret, = exe.run(prog, feed=data, fetch_list=[y])
                        result.extend(each_ret)
                    return result

                # Set drop_last to True, so that the last batch whose
                # number is less than CPU core number would be discarded.
                print(run_inference(drop_last=True)) # [1.0, 4.0]

                # Set drop_last to False, so that the last batch whose
                # number is less than CPU core number can be tested.
                print(run_inference(drop_last=False)) # [1.0, 4.0, 9.0]
Z
Zeng Jinle 已提交
951
        """
J
Jiabin Yang 已提交
952
        if _non_static_mode():
953 954 955 956 957 958 959 960
            return DygraphGeneratorLoader(
                feed_list,
                capacity,
                use_double_buffer,
                iterable,
                return_list,
                use_multiprocess,
            )
961
        else:
962 963 964 965 966 967 968 969
            return GeneratorLoader(
                feed_list,
                capacity,
                use_double_buffer,
                iterable,
                return_list,
                drop_last,
            )
Z
Zeng Jinle 已提交
970 971 972 973

    @staticmethod
    def from_dataset(dataset, places, drop_last=True):
        """
K
Kaipeng Deng 已提交
974 975 976 977
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`paddle.io.DataLoader` which supports multi-processes acceleration.

978
        Create an iterable DataLoader object for loading data from Dataset.
Z
Zeng Jinle 已提交
979
        Dataset is only supported in Linux system currently.
980

Z
Zeng Jinle 已提交
981 982
        Args:
            dataset (InMemoryDataset|QueueDataset): the dataset object.
983 984 985 986
            places (list(CUDAPlace)|list(CPUPlace)|list(str)): places where the result
                data should be converted. If places is list of string, the string in the list
                can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where x is the index of the GPUs.
            drop_last (bool): whether to drop the last batch whose sample
Z
Zeng Jinle 已提交
987
                number is less than batch size. If drop_last = True, they
988
                would be dropped. If drop_last = False, they would be kept.
989

Z
Zeng Jinle 已提交
990
        Returns:
991 992
            loader (DataLoader): the created DataLoader object, which can be
                treated as a Python generator.
993

Z
Zeng Jinle 已提交
994 995 996
        Examples:

            .. code-block:: python
997

998 999 1000 1001
                import paddle
                import paddle.static as static

                paddle.enable_static()
1002

1003 1004
                image = static.data(name='image', shape=[None, 784], dtype='float32')
                label = static.data(name='label', shape=[None, 1], dtype='int64')
1005

1006 1007 1008 1009 1010
                dataset = paddle.distributed.QueueDataset()
                dataset.init(
                    batch_size=32,
                    pipe_command='cat',
                    use_var=[image, label])
Z
Zeng Jinle 已提交
1011
                dataset.set_filelist(['a.txt', 'b.txt', 'c.txt'])
1012

1013
                loader = paddle.io.DataLoader.from_dataset(dataset, static.cpu_places())
Z
Zeng Jinle 已提交
1014 1015
        """
        return DatasetLoader(dataset, places, drop_last)
S
sneaxiy 已提交
1016

S
sneaxiy 已提交
1017

1018 1019 1020 1021
class DygraphGeneratorLoader(DataLoaderBase):
    """
    The GeneratorLoader of dygraph

1022
    The multiprocess dygraph GeneratorLoader's most functions are different from
1023 1024 1025
    static graph GeneratorLoader, Separate implementation to keep code readable.
    """

1026 1027 1028 1029 1030 1031 1032 1033 1034
    def __init__(
        self,
        feed_list=None,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=True,
        use_multiprocess=False,
    ):
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
        self._batch_reader = None
        self._places = None
        self._feed_list = feed_list

        if not capacity:
            raise ValueError("Please give value to capacity.")
        self._capacity = capacity
        self._use_double_buffer = use_double_buffer

        if not iterable:
1045 1046
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports iterable mode only. Change to iterable mode."
1047 1048 1049
            )
        self._iterable = True
        if not return_list:
1050 1051
            warnings.warn(
                "Please NOTE: DygraphGeneratorLoader supports returning as list only. Change to return as list."
1052 1053 1054 1055 1056
            )
        self._return_list = True

        # NOTE: the multiprocessing in different platform is incompatible, we will solve it later
        self._use_multiprocess = use_multiprocess
1057 1058 1059
        if self._use_multiprocess and (
            sys.platform == 'darwin' or sys.platform == 'win32'
        ):
1060 1061
            warnings.warn(
                "NOTE: DygraphGeneratorLoader with multiprocess mode is not currently supported on MacOs and Windows."
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
            )
            self._use_multiprocess = False

        if self._use_multiprocess:
            # NOTE: the multiprocessing.Queue used to save loading data in self._process
            self._data_queue = None
            # NOTE: this process is used to load data asynchronously from self._batch_reader
            self._process = None

        # NOTE: the C++ LoDTensorBlockingQueue instance
        self._blocking_queue = None
        # NOTE: 1. In multiprocess mode, this thread is used to get next batch data from
        # self._data_queue, then push it into self._blocking_queue; 2. In singleprocess
1075
        # mode, this thread is used to get next batch data from self._batch_reader, then
1076 1077
        # push it into self._blocking_queue
        self._thread = None
1078 1079 1080
        self._pin_memory = (
            True if use_pinned_memory() is None else use_pinned_memory()
        )
1081 1082 1083 1084 1085 1086 1087 1088 1089

    @property
    def queue(self):
        return self._blocking_queue

    @property
    def iterable(self):
        return self._iterable

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
    def _clear_and_remove_data_queue(self):
        if self._data_queue is not None:
            while True:
                try:
                    self._data_queue.get_nowait()
                except queue.Empty:
                    break
            global multiprocess_queue_set
            multiprocess_queue_set.remove(self._data_queue)

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
    def _wait_thread_ends(self):
        thread = self._thread
        if thread is not None:
            self._blocking_queue.close()
            thread.join()

    def _wait_process_ends(self):
        process = self._process
        if process is not None:
            process.join()
            # erase process id
1111
            core._erase_process_pids(id(self))
1112

1113 1114 1115 1116 1117 1118 1119 1120 1121
    def _init_iterable(self):
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()
        self._var_names = []
        self._shapes = []
        self._dtypes = []
        self._need_check_feed = []
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
1122 1123
            core.Variable(), self._capacity, False
        )
1124
        self._reader = None
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
        self._reader = core.create_py_reader(
            self.queue,
            self._var_names,
            self._shapes,
            self._dtypes,
            self._need_check_feed,
            self._places,
            self._use_double_buffer,
            True,
            self._pin_memory,
        )
1136 1137 1138

    def _start(self):
        if self._use_multiprocess:
1139 1140 1141
            # clear old _data_queue and remove it from multiprocess_queue_set
            self._clear_and_remove_data_queue()
            # set data_queue and process
1142
            self._data_queue = multiprocessing.Queue(self._capacity)
1143 1144 1145
            # add _data_queue into global queue set
            global multiprocess_queue_set
            multiprocess_queue_set.add(self._data_queue)
1146 1147 1148 1149
            self._process = multiprocessing.Process(
                target=_reader_process_loop,
                args=(self._batch_reader, self._data_queue),
            )
1150 1151 1152 1153 1154
            self._process.daemon = True
            self._process.start()

            # Set child process signal handler
            # NOTE: [ avoiding hang ] 1. if the child process dies due to bus error/segfault
1155
            # or just hang, the main process will hang waiting for data, so here need to deal
1156
            # with SIGSEGV and SIGBUS of child process; 2. if the main process end before child
1157
            # process, it shuts the all its daemonic children down with a SIGTERM (instead of
1158
            # joining them without a timeout), so here nedd to deal with SIGTERM.
1159 1160
            core._set_process_pids(id(self), [self._process.pid])
            _set_SIGCHLD_handler()
1161 1162 1163 1164

            # Set reader_thread
            self._thread_done_event = threading.Event()
            self._thread = threading.Thread(
1165
                target=self._reader_thread_loop_for_multiprocess,
1166 1167
                args=(_current_expected_place(),),
            )
1168 1169 1170
            self._thread.daemon = True
            self._thread.start()
        else:
1171
            self._thread = threading.Thread(
1172
                target=self._reader_thread_loop_for_singleprocess,
1173 1174
                args=(_current_expected_place(),),
            )
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
            self._thread.daemon = True
            self._thread.start()

    def _reset(self):
        self._reader.reset()
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()

    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
1186 1187 1188
        assert (
            self._batch_reader is not None
        ), "Data source of DataLoader has not set yet"
1189 1190 1191 1192 1193 1194 1195

        self._init_iterable()
        self._start()
        return self

    def __next__(self):
        try:
J
Jiabin Yang 已提交
1196
            if _in_eager_without_dygraph_check():
1197
                return core.eager.read_next_tensor_list(
1198 1199
                    self._reader.read_next_list()[0]
                )
1200 1201
            else:
                return self._reader.read_next_var_list()
1202 1203
        except StopIteration:
            self._reset()
1204
            raise
1205

1206 1207 1208 1209 1210 1211 1212 1213 1214
    def _exit_thread_expectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.close()

    def _exit_thread_unexpectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.kill()
        logging.error("DataLoader reader thread raised an exception!")

1215 1216
    def _reader_thread_loop_for_multiprocess(self, legacy_expected_place):
        # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
L
Leo Chen 已提交
1217
        core.set_current_thread_name("Dataloader_" + str(id(self)))
1218 1219
        _set_expected_place(legacy_expected_place)

1220 1221
        while not self._thread_done_event.is_set():
            try:
1222 1223 1224 1225
                # NOTE: [ avoid hanging ] Even with carefully designed data dependencies
                # (i.e., a put() always corresponding to a get()), hanging on get() can
                # still happen when data in queue is corrupted (e.g., due to
                # Queue.cancel_join_thread or unexpected exit). So we set a timeout whenever
1226
                # we try to get data from `data_queue`
1227 1228 1229 1230 1231 1232 1233
                # NOTE: [ avoid failed quickly ] Here, the time setting of QUEUE_GET_TIMEOUT
                # is relatively long, currently it is 60 seconds, because in some models,
                # if the reader child process starts with a heavy burden, the child process
                # has no enough time to put the data in the queue when the main process
                # start trying to get data from queue. At this time, the child thread needs
                # to wait slightly longer
                tensor_list = self._data_queue.get(timeout=QUEUE_GET_TIMEOUT)
1234
            except Exception as e:
1235 1236 1237
                # NOTE [ avoid handing ] After adding the shared memory mechanism, not only
                # the queue.Empty exception will occur here, but other exceptions will also
                # occur, such as mmap failure. If it is not handled here, it will hang.
1238
                self._exit_thread_unexpectedly()
1239 1240
                logging.error(
                    "DataLoader reader thread failed to read data from the multiprocessing.Queue."
1241
                )
1242
                raise e
1243 1244

            if not self._thread_done_event.is_set():
1245
                if tensor_list is not None:
1246 1247
                    try:
                        array = core.LoDTensorArray()
1248 1249
                        for tensor in tensor_list:
                            array.append(tensor)
1250 1251
                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
1252
                    except Exception as e:
1253
                        self._exit_thread_unexpectedly()
1254
                        raise e
1255
                else:
1256
                    self._exit_thread_expectedly()
1257

1258
    def _reader_thread_loop_for_singleprocess(self, legacy_expected_place):
1259
        try:
1260
            # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
L
Leo Chen 已提交
1261
            core.set_current_thread_name("Dataloader_" + str(id(self)))
1262 1263
            _set_expected_place(legacy_expected_place)

1264 1265 1266 1267
            for sample in self._batch_reader():
                array = core.LoDTensorArray()
                for item in sample:
                    if not isinstance(item, core.LoDTensor):
1268
                        item = self._check_input_array(item)
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
                        tmp = core.LoDTensor()
                        tmp.set(item, core.CPUPlace())
                        item = tmp

                    array.append(item)

                if not self._blocking_queue.push(array):
                    break

            self._blocking_queue.close()
            self._thread = None
1280
        except Exception as e:
1281 1282 1283
            self._blocking_queue.kill()
            self._thread = None
            logging.warning(
1284 1285
                "DygraphDataLoader reader thread raised an exception."
            )
1286
            raise e
1287

1288 1289 1290
    def set_sample_generator(
        self, reader, batch_size, drop_last=True, places=None
    ):
1291
        assert batch_size > 0, "batch_size must be larger than 0"
1292 1293 1294 1295
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1296 1297 1298 1299
        self.set_sample_list_generator(
            paddle.batch(reader, batch_size=batch_size, drop_last=drop_last),
            places=places,
        )
1300 1301 1302
        return self

    def set_sample_list_generator(self, reader, places=None):
1303 1304 1305 1306 1307
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
        def __batch_reader_impl__():
            for batch in reader():
                slots = []
                for items in batch:
                    for i, item in enumerate(items):
                        if len(slots) < len(items):
                            slots.append([item])
                        else:
                            slots[i].append(item)
                yield slots

        self.set_batch_generator(__batch_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
1323 1324 1325 1326
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1327
        self._batch_reader = reader
1328 1329
        if places is None:
            places = _current_expected_place()
1330
        self._places = _convert_places(places)
1331 1332 1333
        assert (
            len(self._places) == 1
        ), "Number of places must be 1 in imperative mode"
1334 1335 1336
        return self


Z
Zeng Jinle 已提交
1337
class GeneratorLoader(DataLoaderBase):
1338 1339 1340 1341 1342 1343 1344 1345 1346
    def __init__(
        self,
        feed_list=None,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=False,
        drop_last=True,
    ):
S
sneaxiy 已提交
1347
        self._tensor_reader = None
Z
Zeng Jinle 已提交
1348
        self._places = None
S
sneaxiy 已提交
1349
        self._thread = None
1350
        self._queue = None
1351
        self._feed_list = feed_list
1352 1353 1354
        self._exited = False
        self._drop_last = drop_last
        self._keep_order = keep_data_loader_order()
1355 1356
        if not capacity:
            raise ValueError("Please give value to capacity.")
1357 1358 1359 1360
        self._iterable = iterable
        self._return_list = return_list
        if not self._feed_list:
            raise Exception("Feed list must be given under static mode.")
S
sneaxiy 已提交
1361 1362 1363 1364
        self._use_double_buffer = use_double_buffer
        self._capacity = capacity
        if not self._iterable:
            self._init_non_iterable()
S
sneaxiy 已提交
1365

Z
Zeng Jinle 已提交
1366
    def _wait_thread_ends(self):
1367
        # Get self._thread first to prevent data race, because __thread_main__
Z
Zeng Jinle 已提交
1368 1369 1370 1371 1372 1373 1374 1375
        # would set self._thread be None at the end
        thread = self._thread
        if thread is not None and self._iterable:
            self._queue.close()
            thread.join()

    def _init_iterable(self):
        self._wait_thread_ends()
1376 1377 1378 1379 1380 1381
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
1382
        self._queue = core.init_lod_tensor_blocking_queue(
1383 1384
            core.Variable(), self._capacity, self._keep_order
        )
1385
        self._reader = None
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
        self._reader = core.create_py_reader(
            self.queue,
            self._var_names,
            self._shapes,
            self._dtypes,
            self._need_check_feed,
            self._places,
            self._use_double_buffer,
            self._drop_last,
            False,
        )
S
sneaxiy 已提交
1397 1398 1399 1400 1401 1402 1403

    def _init_non_iterable(self):
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []
1404
        need_check_feed = []
S
sneaxiy 已提交
1405 1406 1407 1408 1409 1410 1411

        for feed_data in self._feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
1412
            need_check_feed.append(int(feed_data.desc.need_check_feed()))
S
sneaxiy 已提交
1413

Z
Zeng Jinle 已提交
1414
        queue_name = data_loader_unique_name_generator(
1415 1416
            'lod_tensor_blocking_queue'
        )
Z
Zeng Jinle 已提交
1417 1418
        reader_name = data_loader_unique_name_generator('create_py_reader')
        double_buffer_name = data_loader_unique_name_generator('double_buffer')
S
sneaxiy 已提交
1419

S
sneaxiy 已提交
1420
        var = global_scope().var(queue_name)
1421
        self._queue = core.init_lod_tensor_blocking_queue(
1422 1423
            var, self._capacity, self._keep_order
        )
1424 1425 1426 1427 1428

        if self._keep_order:
            block = default_main_program().current_block()
        else:
            block = default_startup_program().current_block()
S
sneaxiy 已提交
1429

1430
        reader_var = block.create_var(name=reader_name)
S
sneaxiy 已提交
1431

1432
        dtype_int = [int(t) for t in dtypes]
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
        block.append_op(
            type='create_py_reader',
            inputs={'blocking_queue': [queue_name]},
            outputs={'Out': [reader_var]},
            attrs={
                'shape_concat': shape_concat,
                'lod_levels': lod_levels,
                'dtypes': dtype_int,
                'need_check_feed': need_check_feed,
                'ranks': ranks,
            },
        )
S
sneaxiy 已提交
1445

1446 1447 1448
        reader_var.desc.set_dtypes(dtypes)
        reader_var.persistable = True
        reader_var.stop_gradient = True
S
sneaxiy 已提交
1449

1450 1451 1452 1453 1454 1455
        if self._keep_order:
            main_prog_var = reader_var
            reader = main_prog_var
            reader.reset = self._queue.reset
        else:
            main_prog_var = _copy_reader_var_(
1456 1457
                default_main_program().current_block(), reader_var
            )
1458 1459 1460

            main_prog_var.stop_gradient = True
            main_prog_var.persistable = True
S
sneaxiy 已提交
1461

1462
            reader = monkey_patch_reader_methods(main_prog_var)
S
sneaxiy 已提交
1463 1464

        if self._use_double_buffer:
1465 1466 1467
            double_buffer_reader = double_buffer(
                reader, name=double_buffer_name
            )
S
sneaxiy 已提交
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
            # we return a double buffer reader. However, the reset method comes from
            # py_reader.
            double_buffer_reader.reset = reader.reset
            reader = double_buffer_reader

        self._reader = reader

        default_main_program().current_block().append_op(
            type='read',
            inputs={'Reader': [self._reader]},
1478
            outputs={'Out': self._feed_list},
1479 1480
            attrs={'drop_last': self._drop_last},
        )
S
sneaxiy 已提交
1481 1482 1483 1484 1485 1486 1487 1488

    @property
    def queue(self):
        return self._queue

    @property
    def iterable(self):
        return self._iterable
S
sneaxiy 已提交
1489

Z
Zeng Jinle 已提交
1490 1491
    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
1492 1493 1494
        assert (
            self._tensor_reader is not None
        ), "Data source of DataLoader has not set yet"
S
sneaxiy 已提交
1495

Z
Zeng Jinle 已提交
1496
        self._init_iterable()
S
sneaxiy 已提交
1497
        self._start()
Z
Zeng Jinle 已提交
1498 1499 1500 1501
        return self

    def __next__(self):
        try:
1502
            if self._return_list:
1503 1504 1505 1506
                data = self._reader.read_next_list()
                for i in range(len(data)):
                    data[i] = data[i]._move_to_list()
                return data
1507
            else:
1508
                return self._reader.read_next()
Z
Zeng Jinle 已提交
1509 1510 1511
        except StopIteration:
            self._queue.close()
            self._reset()
1512
            raise
Z
Zeng Jinle 已提交
1513 1514

    def start(self):
1515 1516 1517
        assert (
            not self._iterable
        ), "start() cannot be called when DataLoader is iterable"
1518
        self._start()
Z
Zeng Jinle 已提交
1519 1520

    def reset(self):
1521 1522 1523
        assert (
            not self._iterable
        ), "reset() cannot be called when DataLoader is iterable"
1524
        self._reset()
Z
Zeng Jinle 已提交
1525 1526

    def _start(self):
1527
        def __thread_main__(legacy_expected_place):
Z
Zeng Jinle 已提交
1528
            try:
1529
                # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
L
Leo Chen 已提交
1530
                core.set_current_thread_name("Dataloader_" + str(id(self)))
1531 1532
                _set_expected_place(legacy_expected_place)

1533 1534 1535 1536
                while not self._queue.wait_for_inited(1):
                    if self._exited:
                        return

Z
Zeng Jinle 已提交
1537 1538 1539 1540
                for tensors in self._tensor_reader():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
1541
                            item = self._check_input_array(item)
Z
Zeng Jinle 已提交
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if not self._queue.push(array):
                        break

                self._queue.close()
                self._thread = None
1553
            except Exception as e:
Z
Zeng Jinle 已提交
1554
                self._queue.kill()
Z
Zeng Jinle 已提交
1555
                self._thread = None
1556
                logging.warning('Your reader has raised an exception!')
1557
                raise e
Z
Zeng Jinle 已提交
1558

1559 1560 1561
        self._thread = threading.Thread(
            target=__thread_main__, args=(_current_expected_place(),)
        )
Z
Zeng Jinle 已提交
1562 1563
        self._thread.daemon = True
        self._thread.start()
S
sneaxiy 已提交
1564

S
sneaxiy 已提交
1565
    def _reset(self):
1566
        self._queue.close()
1567
        self._exited = True
Z
Zeng Jinle 已提交
1568 1569 1570 1571
        thread = self._thread
        if thread is not None:
            thread.join()

1572
        self._exited = False
1573 1574
        self._reader.reset()

1575 1576 1577
    def set_sample_generator(
        self, reader, batch_size, drop_last=True, places=None
    ):
Z
Zeng Jinle 已提交
1578
        assert batch_size > 0, "batch_size must be larger than 0"
1579 1580 1581 1582
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1583 1584 1585 1586 1587 1588 1589
        has_lod = False
        for f in self._feed_list:
            if f.lod_level != 0:
                has_lod = True
                break

        if has_lod:
1590 1591 1592 1593 1594 1595
            self.set_sample_list_generator(
                paddle.batch(
                    reader, batch_size=batch_size, drop_last=drop_last
                ),
                places=places,
            )
1596
        else:
1597 1598 1599 1600 1601 1602 1603
            reader = BatchedTensorProvider(
                feed_list=self._feed_list,
                place=core.CPUPlace(),
                batch_size=batch_size,
                generator=reader,
                drop_last=drop_last,
            )
1604
            self.set_batch_generator(reader, places=places)
Z
Zeng Jinle 已提交
1605 1606 1607
        return self

    def set_sample_list_generator(self, reader, places=None):
1608 1609 1610 1611
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
1612
        with program_guard(Program(), Program()):
1613 1614 1615
            feeder = DataFeeder(
                feed_list=self._feed_list, place=core.CPUPlace()
            )
1616
            paddle_reader = feeder.decorate_reader(reader, multi_devices=False)
Z
Zeng Jinle 已提交
1617

1618 1619 1620
        def __tensor_reader_impl__():
            for slots in paddle_reader():
                yield [slots[var.name] for var in self._feed_list]
Z
Zeng Jinle 已提交
1621 1622 1623 1624 1625

        self.set_batch_generator(__tensor_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
1626 1627 1628 1629
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
Z
Zeng Jinle 已提交
1630 1631
        self._tensor_reader = reader
        if self._iterable:
1632 1633 1634
            assert (
                places is not None
            ), "Places cannot be None when DataLoader is iterable"
Z
Zeng Jinle 已提交
1635 1636 1637 1638
            self._places = _convert_places(places)
        else:
            if places is not None:
                logging.info(
1639 1640
                    'places would be ommited when DataLoader is not iterable'
                )
Z
Zeng Jinle 已提交
1641 1642 1643 1644
        return self


class PyReader(DataLoaderBase):
1645
    r"""
1646
    Create a reader object for data feeding in Python.
Z
Zeng Jinle 已提交
1647
    Data would be prefetched using Python thread and be pushed
1648
    into a queue asynchronously. Data in the queue would be extracted
Z
Zeng Jinle 已提交
1649 1650
    automatically when `Executor.run(...)` is called.

1651
    Args:
Z
Zeng Jinle 已提交
1652 1653 1654
        feed_list (list(Variable)|tuple(Variable)): feed variable list.
            The variables should be created by :code:`fluid.layers.data()`.
        capacity (int): capacity of the queue maintained in PyReader.
1655 1656 1657 1658 1659
            The unit is batch number. Set larger capacity if your reader
            is fast.
        use_double_buffer (bool): whether to use double_buffer_reader.
            If use_double_buffer=True, PyReader would prefetch next
            batch data asynchronously, so it would speed up data feeding
Z
Zeng Jinle 已提交
1660
            and occupies a little more CPU or GPU memory, i.e., the memory
1661 1662 1663 1664 1665 1666 1667
            of one batch input data.
        iterable (bool): whether the created PyReader is iterable.
        return_list (bool): whether the return value on each device is
            presented as a list. It is only valid when iterable=True.
            If return_list=False, the return value on each device would
            be a dict of str -> LoDTensor, where the key of the dict is
            the name of each fed variables. If return_list=True, the
Z
Zeng Jinle 已提交
1668 1669
            return value on each device would be a list(LoDTensor). It is
            recommended to use return_list=False in static graph mode and
1670
            use return_list=True in dygraph mode.
Z
Zeng Jinle 已提交
1671 1672

    Returns:
G
guofei 已提交
1673 1674 1675 1676
        the created reader object.

    Return type:
        reader(Reader)
Z
Zeng Jinle 已提交
1677 1678 1679

    Examples:
        1. If iterable = False, the created PyReader object is almost the
1680 1681
           same as :code:`fluid.layers.py_reader()`. Operators would be
           inserted into the program. User should call :code:`start()`
Z
Zeng Jinle 已提交
1682
           before each epoch and catch :code:`fluid.core.EOFException`
1683 1684
           thrown by :code:`Executor.run()` when epoch ends. Once the
           exception is caught, user should call :code:`reset()` to reset
Z
Zeng Jinle 已提交
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
           the reader manually.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 3
1696

G
guofei 已提交
1697 1698
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
1699
               predict = fluid.layers.fc(input=image, size=10, act='softmax')
G
guofei 已提交
1700
               return fluid.layers.cross_entropy(input=predict, label=label)
Z
Zeng Jinle 已提交
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711

           def reader_creator_random_image_and_label(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       fake_image = np.random.uniform(low=0,
                                                      high=255,
                                                      size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label
               return reader

G
guofei 已提交
1712 1713
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
Z
Zeng Jinle 已提交
1714 1715 1716 1717 1718 1719 1720 1721

           reader = fluid.io.PyReader(feed_list=[image, label],
                                      capacity=4,
                                      iterable=False)

           user_defined_reader = reader_creator_random_image_and_label(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE))
G
guofei 已提交
1722 1723
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
Z
Zeng Jinle 已提交
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
           executor.run(fluid.default_startup_program())
           for i in range(EPOCH_NUM):
               reader.start()
               while True:
                   try:
                       executor.run(feed=None)
                   except fluid.core.EOFException:
                       reader.reset()
                       break

1734

Z
Zeng Jinle 已提交
1735
        2. If iterable=True, the created PyReader object is decoupled with
1736 1737 1738 1739
           the program. No operator would be inserted into the program.
           In this case, the created reader is a Python generator, which
           is iterable. User should feed the data yielded from PyReader
           object into :code:`Executor.run(feed=...)`.
Z
Zeng Jinle 已提交
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 10

G
guofei 已提交
1751 1752
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
1753
               predict = fluid.layers.fc(input=image, size=10, act='softmax')
G
guofei 已提交
1754 1755
               return fluid.layers.cross_entropy(input=predict, label=label)

Z
Zeng Jinle 已提交
1756 1757 1758
           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
G
guofei 已提交
1759 1760
                       fake_image = np.random.uniform(low=0, high=255, size=[height, width])
                       fake_label = np.ones([1])
1761
                       yield fake_image, fake_label
Z
Zeng Jinle 已提交
1762 1763
               return reader

G
guofei 已提交
1764 1765 1766
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
           reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True, return_list=False)
Z
Zeng Jinle 已提交
1767 1768 1769 1770

           user_defined_reader = reader_creator_random_image(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
G
guofei 已提交
1771
                   fluid.core.CPUPlace())
1772

G
guofei 已提交
1773 1774 1775
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
           executor.run(fluid.default_startup_program())
1776

Z
Zeng Jinle 已提交
1777 1778
           for _ in range(EPOCH_NUM):
               for data in reader():
G
guofei 已提交
1779
                   executor.run(feed=data, fetch_list=[loss])
Z
Zeng Jinle 已提交
1780 1781


1782
        3. If return_list=True, the return values would be presented as list instead of dict.
Z
Zeng Jinle 已提交
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
           This is usually used in dygraph mode.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           ITER_NUM = 5
           BATCH_SIZE = 10

           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       yield np.random.uniform(low=0, high=255, size=[height, width]), \
                           np.random.random_integers(low=0, high=9, size=[1])
               return reader

           place = fluid.CPUPlace()
           with fluid.dygraph.guard(place):
               py_reader = fluid.io.PyReader(capacity=2, return_list=True)
               user_defined_reader = reader_creator_random_image(784, 784)
               py_reader.decorate_sample_list_generator(
                   paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
                   place)
               for image, label in py_reader():
                   relu = fluid.layers.relu(image)
    """

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
    def __init__(
        self,
        feed_list=None,
        capacity=None,
        use_double_buffer=True,
        iterable=True,
        return_list=False,
    ):
        self._loader = DataLoader.from_generator(
            feed_list, capacity, use_double_buffer, iterable, return_list
        )
Z
Zeng Jinle 已提交
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836

    @property
    def queue(self):
        return self._loader.queue

    @property
    def iterable(self):
        return self._loader.iterable

    def __iter__(self):
        return self._loader.__iter__()

    def __next__(self):
        return self._loader.__next__()
S
sneaxiy 已提交
1837 1838

    def start(self):
S
add doc  
sneaxiy 已提交
1839
        '''
1840 1841 1842
        Start the data feeding thread.
        Can only call when the reader object is not iterable.

1843 1844
        Example:
            .. code-block:: python
1845

H
Huihuang Zheng 已提交
1846 1847 1848 1849
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1850 1851 1852 1853 1854 1855
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1856
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1857 1858 1859 1860
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1861
                executor = fluid.Executor(fluid.CPUPlace())
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break

1872
        '''
Z
Zeng Jinle 已提交
1873
        self._loader.start()
S
sneaxiy 已提交
1874

S
sneaxiy 已提交
1875
    def reset(self):
S
add doc  
sneaxiy 已提交
1876
        '''
1877
        Reset the reader object when :code:`fluid.core.EOFException` raises.
S
add doc  
sneaxiy 已提交
1878
        Can only call when the reader object is not iterable.
1879

1880 1881 1882
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1883 1884 1885 1886
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1887 1888 1889 1890 1891 1892
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1893
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1894 1895 1896 1897
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1898
                executor = fluid.Executor(fluid.CPUPlace())
1899 1900 1901 1902 1903 1904 1905 1906
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
1907
                            break
1908

S
add doc  
sneaxiy 已提交
1909
        '''
Z
Zeng Jinle 已提交
1910
        self._loader.reset()
S
sneaxiy 已提交
1911

1912 1913 1914
    def decorate_sample_generator(
        self, sample_generator, batch_size, drop_last=True, places=None
    ):
S
sneaxiy 已提交
1915 1916
        '''
        Set the data source of the PyReader object.
1917

S
sneaxiy 已提交
1918
        The provided :code:`sample_generator` should be a Python generator,
1919
        which yields list(numpy.ndarray)-typed data of each sample.
S
sneaxiy 已提交
1920 1921 1922

        :code:`places` must be set when the PyReader object is iterable.

1923
        If all inputs have no lods, this method is faster than
S
sneaxiy 已提交
1924
        :code:`decorate_sample_list_generator(paddle.batch(sample_generator, ...))` .
S
sneaxiy 已提交
1925 1926 1927

        Args:
            sample_generator (generator): Python generator that yields
1928
                list(numpy.ndarray)-typed sample data.
S
sneaxiy 已提交
1929 1930
            batch_size (int): batch size. Must be larger than 0.
            drop_last (bool): Whether to drop the last batch when sample number
1931
                is less than batch_size.
S
sneaxiy 已提交
1932 1933
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1934 1935 1936 1937

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1938 1939 1940
                import paddle.fluid as fluid
                import numpy as np

1941 1942 1943
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
1944

G
guofei 已提交
1945 1946
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
1947
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')
G
guofei 已提交
1948
                    return fluid.layers.cross_entropy(input=predict, label=label)
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.array([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1960 1961
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1962 1963 1964 1965 1966
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_generator(user_defined_generator,
                                                 batch_size=BATCH_SIZE,
G
guofei 已提交
1967 1968 1969 1970
                                                 places=[fluid.CPUPlace()])
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1971 1972 1973

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1974
                        executor.run(feed=data, fetch_list=[loss])
1975

S
sneaxiy 已提交
1976
        '''
1977 1978 1979
        self._loader.set_sample_generator(
            sample_generator, batch_size, drop_last, places
        )
S
sneaxiy 已提交
1980

S
sneaxiy 已提交
1981
    def decorate_sample_list_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1982
        '''
1983
        Set the data source of the PyReader object.
S
add doc  
sneaxiy 已提交
1984 1985

        The provided :code:`reader` should be a Python generator,
1986 1987
        which yields list(numpy.ndarray) typed batched data.

S
add doc  
sneaxiy 已提交
1988 1989 1990
        :code:`places` must be set when the PyReader object is iterable.

        Args:
1991 1992
            reader (generator): Python generator that yields
                list(numpy.ndarray)-typed batched data.
S
sneaxiy 已提交
1993 1994
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1995

1996 1997 1998
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1999 2000 2001 2002
                import paddle
                import paddle.fluid as fluid
                import numpy as np

2003 2004 2005 2006
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3

G
guofei 已提交
2007 2008
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
2009
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')
G
guofei 已提交
2010 2011
                    return fluid.layers.cross_entropy(input=predict, label=label)

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.ones([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
2022 2023
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
2024 2025 2026 2027 2028
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_list_generator(
                    paddle.batch(user_defined_generator, batch_size=BATCH_SIZE),
G
guofei 已提交
2029
                    fluid.core.CPUPlace())
2030

G
guofei 已提交
2031 2032 2033
                loss = network(image, label)
                executor = fluid.Executor(fluid.core.CPUPlace())
                executor.run(fluid.default_startup_program())
2034 2035 2036

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
2037
                        executor.run(feed=data, fetch_list=[loss])
2038

S
add doc  
sneaxiy 已提交
2039
        '''
Z
Zeng Jinle 已提交
2040
        self._loader.set_sample_list_generator(reader, places)
S
sneaxiy 已提交
2041

S
sneaxiy 已提交
2042
    def decorate_batch_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
2043 2044 2045 2046
        '''
        Set the data source of the PyReader object.

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
2047
        which yields numpy.ndarray-typed or LoDTensor-typed batched data.
S
add doc  
sneaxiy 已提交
2048 2049 2050 2051 2052 2053

        :code:`places` must be set when the PyReader object is iterable.

        Args:
            reader (generator): Python generator that yields LoDTensor-typed
                batched data.
S
sneaxiy 已提交
2054
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
S
sneaxiy 已提交
2055
                be provided when PyReader is iterable.
2056 2057 2058 2059

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
2060 2061 2062
                import paddle.fluid as fluid
                import numpy as np

2063 2064 2065
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
2066

G
guofei 已提交
2067 2068
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
2069
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')
G
guofei 已提交
2070
                    return fluid.layers.cross_entropy(input=predict, label=label)
2071 2072 2073 2074 2075 2076 2077 2078

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            batch_image = np.random.uniform(low=0,
                                                            high=255,
                                                            size=[BATCH_SIZE, height, width])
                            batch_label = np.ones([BATCH_SIZE, 1])
G
guofei 已提交
2079 2080
                            batch_image = batch_image.astype('float32')
                            batch_label = batch_label.astype('int64')
2081 2082 2083
                            yield batch_image, batch_label
                    return generator

G
guofei 已提交
2084 2085
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
2086 2087 2088
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
G
guofei 已提交
2089
                reader.decorate_batch_generator(user_defined_generator, fluid.CPUPlace())
2090

G
guofei 已提交
2091 2092 2093
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
2094 2095 2096

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
2097
                        executor.run(feed=data, fetch_list=[loss])
2098

S
add doc  
sneaxiy 已提交
2099
        '''
Z
Zeng Jinle 已提交
2100 2101 2102 2103 2104
        self._loader.set_batch_generator(reader, places)


class DatasetLoader(DataLoaderBase):
    def __init__(self, dataset, places, drop_last):
2105 2106 2107 2108 2109
        assert isinstance(
            dataset, paddle.distributed.fleet.dataset.DatasetBase
        ), "dataset must be type of DatasetBase"
        assert (
            not _non_static_mode()
Z
Zeng Jinle 已提交
2110
        ), "DatasetLoader is not supported in dygraph mode yet"
2111 2112 2113 2114
        if isinstance(places, (list, tuple)):
            places = _get_paddle_place_list(places)
        else:
            places = _get_paddle_place(places)
Z
Zeng Jinle 已提交
2115 2116 2117

        thread_num = len(places)

2118 2119 2120 2121 2122
        assert (
            len(dataset.filelist) >= thread_num
        ), "Filelist number of dataset {} must be not less than place number {}".format(
            len(dataset.filelist), thread_num
        )
Z
Zeng Jinle 已提交
2123 2124

        if dataset.thread_num != 0 and dataset.thread_num != thread_num:
2125 2126
            logging.warn(
                'thread_num {} which is set in Dataset is ignored'.format(
2127 2128 2129
                    dataset.thread_num
                )
            )
Z
Zeng Jinle 已提交
2130

2131
        dataset._set_thread(thread_num)
Z
Zeng Jinle 已提交
2132

2133 2134 2135 2136 2137 2138
        if (
            isinstance(
                dataset, paddle.distributed.fleet.dataset.InMemoryDataset
            )
            and dataset.queue_num > thread_num
        ):
2139 2140
            logging.warn(
                "queue_num {} which is set in Dataset is ignored".format(
2141 2142 2143
                    dataset.queue_num
                )
            )
2144
            dataset._set_queue_num(thread_num)
Z
Zeng Jinle 已提交
2145 2146 2147

        self._dataset = dataset
        use_slots = [
2148 2149
            slot.name
            for slot in dataset.proto_desc.multi_slot_desc.slots
Z
Zeng Jinle 已提交
2150 2151 2152 2153
            if slot.is_used
        ]

        self._iterable_dataset = core.IterableDatasetWrapper(
2154 2155 2156 2157 2158 2159
            dataset.dataset,
            use_slots,
            _convert_places(places),
            dataset.proto_desc.batch_size,
            drop_last,
        )
Z
Zeng Jinle 已提交
2160 2161 2162 2163 2164 2165 2166 2167 2168

    def __iter__(self):
        self._dataset._finish_to_run()
        self._dataset._prepare_to_run()
        self._iterable_dataset._start()
        return self

    def __next__(self):
        return self._iterable_dataset._next()